The Dirichlet problem for nonlocal elliptic equations

被引:5
作者
Tian, Rongrong [1 ,2 ]
Wei, Jinlong [3 ]
Tang, Yanbin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan, Hubei, Peoples R China
[2] Wuhan Univ Technol, Coll Sci, Wuhan, Hubei, Peoples R China
[3] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Vanishing viscosity solution; existence; uniqueness; measure-valued nonlocal equation; FRACTIONAL LAPLACIAN; VISCOSITY SOLUTIONS; INVARIANT-MEASURES; REGULARITY; DIFFUSION; DRIVEN; SYSTEMS;
D O I
10.1080/00036811.2019.1677893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of nonlocal elliptic equations on a bounded domain . For (), by the Lax?Milgram theorem and the De Giorgi iteration, we prove the existence and uniqueness of solution. Furthermore, we investigate the existence of densities for measure-valued solutions to nonhomogeneous measure-valued nonlocal elliptic equations.
引用
收藏
页码:2093 / 2107
页数:15
相关论文
共 34 条
[1]   Renormalized solutions of the fractional Laplace equation [J].
Alibaud, Nathael ;
Andreianov, Boris ;
Bendahmane, Mostafa .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (13-14) :759-762
[2]  
Applebaum D, 2004, LEVY PROCESSES STOCH, V93
[3]   Second-order elliptic integro-differential equations: viscosity solutions' theory revisited [J].
Barles, B. ;
Imbert, Cyril .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03) :567-585
[4]   Systems of equations driven by stable processes [J].
Bass, RF ;
Chen, ZQ .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (02) :175-214
[5]   Elliptic and parabolic equations for measures [J].
Bogachev, V. I. ;
Krylov, N. V. ;
Roeckner, M. .
RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (06) :973-1078
[6]   Regularity of invariant measures: The case of non-constant diffusion part [J].
Bogachev, VI ;
Krylov, N ;
Rockner, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 138 (01) :223-242
[7]   On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions [J].
Bogachev, VI ;
Krylov, NV ;
Röckner, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) :2037-2080
[8]   Semilinear fractional elliptic equations involving measures [J].
Chen, Huyuan ;
Veron, Laurent .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (05) :1457-1486
[9]   Semi linear fractional elliptic equations with gradient nonlinearity involving measures [J].
Chen, Huyuan ;
Veron, Laurent .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) :5467-5492
[10]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573