In the present study, bioceramic composites with improved mechanical and biological properties were synthesized by sintering mixtures of beta-tricalcium phosphate and SiO(2)-CaO-MgO-P(2)O(5) sol-gel derived bioactive glass at 1000-1200A degrees C. The physical, mechanical, structural and biological properties of the composites were evaluated by appropriate experiments such as microhardness, bending strength, XRD, SEM and MTT. The results showed that 1000 and 1100A degrees C were not appropriate temperatures for sintering the composites and in contrast, the microhardness, bending strength and bulk density significantly increased by increasing in quantity of bioglass phase when the samples were sintered at 1200A degrees C. No significant difference was found between the fracture toughness of the composites and pure beta-tricalcium phosphate. beta-tricalcium phosphate was structurally stable up to 1200A degrees C and did not transform to its alpha form even in the presence of the bioglass phase but migration of magnesium cations from the glass composition into its lattice structure was found by right-shift in XRD patterns, especially when the composite contained higher amount of bioglass component. Calcium silicate was also crystallized in the composition of the composites, which was more detectable in higher sintering temperatures. The results of the MTT test showed that proliferation of human osteosarcoma cells on the composites was considerably better than that of pure beta-TCP.