Nanocellulose polymer composites as innovative pool for (bio)material development

被引:55
作者
Kramer, Friederike
Klemm, Dieter
Schumann, Dieter
Hessler, Nadine
Wesarg, Falko
Fried, Wolfgang
Stadermann, Dietmar
机构
[1] Univ Jena, Inst Organ Chem & Macromol Chem, D-07743 Jena, Germany
[2] Polymet Jena eV, Polymers Sci Med Technol, D-07743 Jena, Germany
[3] Univ Jena, Inst Mat Sci & Technol, D-07743 Jena, Germany
关键词
bacterial nanocellulose; biomaterials; photopolymerization; poly(meth-)acrylates; polymer composites;
D O I
10.1002/masy.200651213
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Using a "never-dried" procedure (according to Figure 4) shaped bacterial nanocellulose (BC, 1% cellulose, 99% water) has been modified by the formation of BC-polymer composites. For this purpose, acrylate and methacrylate monomers and methacrylate crosslinkers were photopolymerized inside an ethanol-swollen nanofiber network. Using the ethanol as solvent and as confirmed by model reactions the synthetic polymer (SP) part of the composites is constructed of crosslinked polymers (number of repeating units in the range Of 500). As part of ongoing work on the development of (bio)materials from the innovative pool of BC composites these investigations are recently directed towards the creation of collagen-like materials. Thus, for these purposes, mainly water absorption capacity, strength, and elasticity have to be controlled, whilst still retaining essential features of BC like shape, nanofiber network, pore system, and proved biocompatibility. Using acrylic acid, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate, N-vinyl pyrrolidone as acrylate monomers and triethylene glycol dimethacrylate and 1,4-butandiol dimethacrylate as crosslinkers of different concentrations either a filling of the pores or a coating of the fibers in the BC nanocomposites could be achieved. The small cellulose content of the composites significantly increases the water absorption value and the strength of the material as well as the ability of re-swelling in the case of fiber coated composites. Sample 12 is an optimized BC-SP composite regarding important properties of hyaline cartilage like Young's modulus in the range of 5-20 MPa using the well-known Simplex-method.
引用
收藏
页码:136 / 148
页数:13
相关论文
共 19 条
[1]  
Brown AJ, 1886, J CHEM SOC, V49, P432, DOI [DOI 10.1039/CT8864900432, 10.1039/CT8864900432]
[2]  
Bruce Martin R., 1998, Skeletal Tissue Mechanics
[3]   Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane [J].
Choi, YJ ;
Ahn, YH ;
Kang, MS ;
Jun, HK ;
Kim, IS ;
Moon, SH .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2004, 79 (01) :79-84
[4]  
Ciechanska D, 2004, FIBRES TEXT EAST EUR, V12, P69
[5]   ALTERATION OF INVIVO CELLULOSE RIBBON ASSEMBLY BY CARBOXYMETHYLCELLULOSE AND OTHER CELLULOSE DERIVATIVES [J].
HAIGLER, CH ;
WHITE, AR ;
BROWN, RM ;
COOPER, KM .
JOURNAL OF CELL BIOLOGY, 1982, 94 (01) :64-69
[6]   SYNTHESIS OF CELLULOSE BY ACETOBACTER-XYLINUM .2. PREPARATION OF FREEZE-DRIED CELLS CAPABLE OF POLYMERIZING GLUCOSE TO CELLULOSE [J].
HESTRIN, S ;
SCHRAMM, M .
BIOCHEMICAL JOURNAL, 1954, 58 (02) :345-352
[7]   Bacterial synthesized cellulose - artificial blood vessels for microsurgery [J].
Klemm, D ;
Schumann, D ;
Udhardt, U ;
Marsch, S .
PROGRESS IN POLYMER SCIENCE, 2001, 26 (09) :1561-1603
[8]  
KLEMM D, 2005, GORD C CHEM POL HONG
[9]  
Klemm D., 2001, Patent No. [2001061026A1, 2001061026]
[10]   Nanocelluloses as innovative polymers in research and application [J].
Klemm, Dieter ;
Schumann, Dieter ;
Kramer, Friederike ;
Hessler, Nadine ;
Hornung, Michael ;
Schmauder, Hans-Peter ;
Marsch, Silvia .
POLYSACCHARIDES II, 2006, 205 :49-+