A random-effects model for clustered circular data

被引:4
作者
Rivest, Louis-Paul [1 ]
Kato, Shogo [2 ]
机构
[1] Univ Laval, Dept Math & Stat, 1045 Ave Med, Quebec City, PQ G1V 0A6, Canada
[2] Inst Stat Math, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, Japan
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2019年 / 47卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
Angular regression; circula; intra-cluster correlation; random effects; uniform distribution; von Mises distribution; MULTIVARIATE LINEAR-MODELS;
D O I
10.1002/cjs.11520
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers a circular regression model for clustered data, where both the cluster effects and the regression errors have von Mises distributions. It involves beta, a vector of parameters for the fixed effects, and two concentration parameters for the error distribution. A measure of intra-cluster circular correlation and a predictor for an unobserved cluster random effect are studied. Preliminary estimators for the vector beta and the two concentration parameters are proposed, and their performance is compared with that of the maximum likelihood estimators in a simulation study. A numerical example investigating the factors impacting the orientation taken by a sand hopper when released is presented. The Canadian Journal of Statistics 00: 000-000; 2019 (c) 2019 Statistical Society of Canada
引用
收藏
页码:712 / 728
页数:17
相关论文
共 29 条
[1]   Sine-skewed circular distributions [J].
Abe, Toshihiro ;
Pewsey, Arthur .
STATISTICAL PAPERS, 2011, 52 (03) :683-707
[2]  
Agostinelli C., 2017, R PACKAGE CIRCULAR C
[3]  
[Anonymous], 2013, CIRCULAR STAT R
[4]  
[Anonymous], 2015, Wiley series in survey methodology
[5]   Analysis of circular longitudinal data based on generalized estimating equations [J].
Artes, R ;
Paula, GA ;
Ranvaud, R .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2000, 42 (03) :347-358
[6]   AN ERROR-COMPONENTS MODEL FOR PREDICTION OF COUNTY CROP AREAS USING SURVEY AND SATELLITE DATA [J].
BATTESE, GE ;
HARTER, RM ;
FULLER, WA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (401) :28-36
[7]   Circular interpretation of regression coefficients [J].
Cremers, Jolien ;
Mulder, Kees Tim ;
Klugkist, Irene .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2018, 71 (01) :75-95
[8]  
DELIA A, 2001, STAT METHODS APPL, V10, P157, DOI DOI 10.1007/BF02511646
[9]   Circular regression [J].
Downs, TD ;
Mardia, KV .
BIOMETRIKA, 2002, 89 (03) :683-697
[10]   REGRESSION-MODELS FOR AN ANGULAR RESPONSE [J].
FISHER, NI ;
LEE, AJ .
BIOMETRICS, 1992, 48 (03) :665-677