Reply to the 'Comment on "Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures"' by X. Chen, V. Shvartsman, D. C. Lupascu and Q. M. Zhang, Energy Environ. Sci., 2021, DOI:; 10.1039/D0EE02548H

被引:4
作者
Vats, Gaurav [1 ]
Kumar, Ashok [2 ]
Bowen, Chris R. [3 ]
Ortega, Nora [4 ,5 ]
Katiyar, Ram S. [4 ,5 ]
机构
[1] Katholieke Univ Leuven, Dept Phys & Astron, Celestijnenlaan 200D, B-3001 Leuven, Belgium
[2] CSIR, Natl Phys Lab, Dr KS Krishnan Marg, Delhi 110012, India
[3] Univ Bath, Dept Mech Engn, Mat Res Ctr, Bath BA2 7AY, Avon, England
[4] Univ Puerto Rico, Dept Phys, San Juan, PR 00931 USA
[5] Univ Puerto Rico, Inst Funct Nanomat, San Juan, PR 00931 USA
基金
欧盟地平线“2020”;
关键词
D O I
10.1039/d0ee03897k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chen et al. (2020) used schematics to claim that a temperature-dependent change in polarisation could not lead to a change in polar entropy of single and polycrystalline materials and hence should not be used for estimating electrocaloric effect (ECE) performance using Maxwell relations. Through this article, we explain how this reasoning does not fit well to our ECE estimates for PbZr0.53Ti0.47O3 (PZT) and CoFe2O4 (CFO) heterostructures in Vats et al. (2016). In addition, a detailed explanation of the calculation of ECE performance in our heterostructures is presented since Chen et al. (2020) reported difficulty in understanding how ECE calculations in particular temperature ranges, that were away from the highest ECE temperature, were related to the polarisation versus temperature data.
引用
收藏
页码:1615 / 1617
页数:3
相关论文
共 9 条
[1]   Comment on "Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures'' by G. Vats, A. Kumar, N. Ortega, C. R. Bowen and R. S. Katiyar, Energy Environ. Sci., 2016, 9, 1335 [J].
Chen, Xin ;
Shvartsman, Vladimir ;
Lupascu, Doru C. ;
Zhang, Q. M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (03) :1612-1614
[2]   Specific heat of ferroelectric Pb(Zr1-xTix)O3 ceramics across the morphotropic phase boundary [J].
Lang, S. B. ;
Zhu, W. M. ;
Ye, Z. -G. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (09)
[3]  
Lines M.E., 2001, Principles and Applications of Ferroelectrics and Related Materials, DOI DOI 10.1093/ACPROF:OSO/9780198507789.001.0001
[4]   Direct and indirect measurements on electrocaloric effect: Recent developments and perspectives [J].
Liu, Yang ;
Scott, James F. ;
Dkhil, Brahim .
APPLIED PHYSICS REVIEWS, 2016, 3 (03)
[5]   Some strategies for improving caloric responses with ferroelectrics [J].
Liu, Yang ;
Scott, James F. ;
Dkhil, Brahim .
APL MATERIALS, 2016, 4 (06)
[6]   Electrocaloric Materials for Solid-State Refrigeration [J].
Lu, Sheng-Guo ;
Zhang, Qiming .
ADVANCED MATERIALS, 2009, 21 (19) :1983-1987
[7]   High-resolution electrocaloric and heat capacity measurements in barium titanate [J].
Novak, Nikola ;
Kutnjak, Zdravko ;
Pirc, Rasa .
EPL, 2013, 103 (04)
[8]   Investigation of temperature-dependent polarization, dielectric, and magnetization behavior of multiferroic layered nanostructure [J].
Ortega, N. ;
Kumar, Ashok ;
Katiyar, Ram S. ;
Rinaldi, Carlos .
THIN SOLID FILMS, 2010, 519 (02) :641-649
[9]   Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures [J].
Vats, Gaurav ;
Kumar, Ashok ;
Ortega, Nora ;
Bowen, Chris R. ;
Katiyar, Ram S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (04) :1335-1345