Adaptive added-order anti-synchronization of chaotic systems with fully unknown parameters

被引:41
作者
Shi, Xue Rong [1 ]
Wang, Zuo Lei [1 ]
机构
[1] Yancheng Teachers Univ, Dept Math, Yancheng 224002, Jiangsu, Peoples R China
关键词
Added-order; Anti-synchronization; Adaptive control; Unknown parameters; SCHEME;
D O I
10.1016/j.amc.2009.07.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work investigates the chaos anti-synchronization between two different dimensional chaotic systems with fully unknown parameters via added-order. Based on the Lyapunov stability theory, the adaptive controllers with corresponding parameter update laws are designed such that the two different chaotic systems with different dimensions can be synchronized asymptotically. Finally, two illustrative numerical simulations are given to demonstrate the effectiveness of the proposed scheme. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:1711 / 1717
页数:7
相关论文
共 24 条
[1]   Anti-synchronization of two hyperchaotic systems via nonlinear control [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (08) :3402-3411
[2]   Cooperative behavior of a chain of synaptically coupled chaotic neurons [J].
Bazhenov, M ;
Huerta, R ;
Rabinovich, MI ;
Sejnowski, T .
PHYSICA D, 1998, 116 (3-4) :392-400
[3]  
Bowong S, 2005, INT J NONLIN SCI NUM, V6, P399
[4]   Synchronization of chaotic systems with different order -: art. no. 036226 [J].
Femat, R ;
Solís-Perales, G .
PHYSICAL REVIEW E, 2002, 65 (03) :1-036226
[5]   On the various kinds of synchronization in delayed Dufng-Van der Pol system [J].
Ghosh, Dibakar ;
Chowdhury, A. Roy ;
Saha, Papri .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (04) :790-803
[6]   Nonlinear-observer-based synchronization scheme for multiparameter estimation [J].
Ghosh, Dibakar .
EPL, 2008, 84 (04)
[7]   Adaptive scheme for synchronization-based multiparameter estimation from a single chaotic time series and its applications [J].
Ghosh, Dibakar ;
Banerjee, Santo .
PHYSICAL REVIEW E, 2008, 78 (05)
[8]   Generalized projective synchronization in time-delayed systems: Nonlinear observer approach [J].
Ghosh, Dibakar .
CHAOS, 2009, 19 (01)
[9]   Reduced-order synchronization of chaotic systems with parameters unknown [J].
Ho, MC ;
Hung, YC ;
Liu, ZY ;
Jiang, IM .
PHYSICS LETTERS A, 2006, 348 (3-6) :251-259
[10]   Adaptive control for anti-synchronization of Chua's chaotic system [J].
Hu, J ;
Chen, SH ;
Chen, L .
PHYSICS LETTERS A, 2005, 339 (06) :455-460