Supercontraction forces in spider dragline silk depend on hydration rate

被引:55
作者
Agnarsson, Ingi [1 ,2 ,5 ]
Boutry, Cecilia [1 ]
Wong, Shing-Chung [3 ]
Baji, Avinash [3 ]
Dhinojwala, Ali [4 ]
Sensenig, Andrew T. [1 ]
Blackledge, Todd A. [1 ]
机构
[1] Univ Akron, Dept Biol, Integrated Biosci Program, Akron, OH 44325 USA
[2] Univ Puerto Rico, Dept Biol, Rio Piedras, PR 00931 USA
[3] Univ Akron, Dept Mech Engn, Integrated Biosci Program, Akron, OH 44325 USA
[4] Univ Akron, Dept Polymer Sci, Integrated Biosci Program, Akron, OH 44325 USA
[5] Slovenian Acad Sci & Arts, Ctr Sci Res, Inst Biol, SI-1001 Ljubljana, Slovenia
基金
美国国家科学基金会;
关键词
Biomimetic fiber; Humidity; Spider silk; Supercontraction; Thermostability; MECHANICAL-PROPERTIES; LATRODECTUS-HESPERUS; BLACK-WIDOW; FIBERS; ORIENTATION; VARIABILITY; BEHAVIOR; PROLINE; CONTRACTION; SEQUENCE;
D O I
10.1016/j.zool.2008.11.003
中图分类号
Q95 [动物学];
学科分类号
071002 ;
摘要
Spider dragline silk is a model biological polymer for biomimetic research due to its many desirable and unusual properties. 'Supercontraction' describes the dramatic shrinking of dragline silk fibers when wetted. In restrained silk fibers, supercontraction generates substantial stresses of 40-50 MPa above a critical humidity of similar to 70% relative humidity (RH). This stress may maintain tension in webs under the weight of rain or dew and could be used in industry for robotics, sensor technology, and other applications. Our own findings indicate that supercontraction can generate stress over a much broader range than previously reported, from 10 to 140 MPa. Here we show that this variation in supercontraction stress depends upon the rate at which the environment reaches the critical level of humidity causing supercontraction. Slow humidity increase, over several minutes, leads to relatively low supercontraction stress, while fast humidity increase, over a few seconds, typically results in higher supercontraction stress. Slowly supercontracted fibers take up less water and differ in thermostability from rapidly supercontracted fibers, as shown by thermogravimetric analysis. This suggests that spider silk achieves different molecular configurations depending upon the speed at which supercontraction occurs. Ultimately, rate-dependent supercontraction may provide a mechanism to tailor the properties of silk or biomimetic fibers for various applications. (C) 2009 Elsevier GmbH. All rights reserved.
引用
收藏
页码:325 / 331
页数:7
相关论文
共 50 条
  • [41] In Situ Raman Spectroscopic Study of Al-Infiltrated Spider Dragline Silk under Tensile Deformation
    Lee, Seung-Mo
    Pippel, Eckhard
    Moutanabbir, Oussama
    Kim, Jae-Hyun
    Lee, Hak-Joo
    Knez, Mato
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (19) : 16827 - 16834
  • [42] Transmission X-ray microscopy of spider dragline silk
    Glisovic, Anja
    Thieme, Juergen
    Guttmann, Peter
    Salditt, Tim
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2007, 40 (02) : 87 - 95
  • [43] Solid-state NMR evidence for elastin-like β-turn structure in spider dragline silk
    Jenkins, Janelle E.
    Creager, Melinda S.
    Butler, Emily B.
    Lewis, Randolph V.
    Yarger, Jeffery L.
    Holland, Gregory P.
    CHEMICAL COMMUNICATIONS, 2010, 46 (36) : 6714 - 6716
  • [44] Morphology and Microstructure of Spider Dragline Silk from Araneus Ventricosus
    潘志娟
    三浦幹彦
    森川英明
    岩佐昌征
    刘敏
    Journal of Donghua University(English Edition), 2005, (01) : 73 - 77
  • [45] Antheraea pernyi Silk Fiber: A Potential Resource for Artificially Biospinning Spider Dragline Silk
    Zhang, Yaopeng
    Yang, Hongxia
    Shao, Huili
    Hu, Xuechao
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2010, : 1 - 8
  • [46] Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers
    Teule, Florence
    Addison, Bennett
    Cooper, Alyssa R.
    Ayon, Joel
    Henning, Robert W.
    Benmore, Chris J.
    Holland, Gregory P.
    Yarger, Jeffery L.
    Lewis, Randolph V.
    BIOPOLYMERS, 2012, 97 (06) : 418 - 431
  • [47] High-Toughness Silk Produced by a Transgenic Silkworm Expressing Spider (Araneus ventricosus) Dragline Silk Protein
    Kuwana, Yoshihiko
    Sezutsu, Hideki
    Nakajima, Ken-ichi
    Tamada, Yasushi
    Kojima, Katsura
    PLOS ONE, 2014, 9 (08):
  • [48] Engineered Spider Silk Proteins for Biomimetic Spinning of Fibers with Toughness Equal to Dragline Silks
    Arndt, Tina
    Greco, Gabriele
    Schmuck, Benjamin
    Bunz, Jessica
    Shilkova, Olga
    Francis, Juanita
    Pugno, Nicola M.
    Jaudzems, Kristaps
    Barth, Andreas
    Johansson, Jan
    Rising, Anna
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (23)
  • [49] Thermo-hygro-mechanical behavior of spider dragline silk:: Glassy and rubbery states
    Plaza, GR
    Guinea, GV
    Pérez-Rigueiro, J
    Elices, M
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (06) : 994 - 999