Geometric Construction of the r-Map: From Affine Special Real to Special Kahler Manifolds

被引:21
作者
Alekseevsky, D. V. [1 ,2 ]
Cortes, V. [3 ,4 ]
机构
[1] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] JCMB, Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Hamburg, Dept Math, D-20146 Hamburg, Germany
[4] Univ Hamburg, Zentrum Math Phys, D-20146 Hamburg, Germany
关键词
Manifold; Tangent Bundle; Vector Multiplet; Ricci Curvature; Geometric Construction;
D O I
10.1007/s00220-009-0803-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give an intrinsic definition of ( affine very) special real manifolds and realise any such manifold M as a domain in affine space equipped with a metric which is the Hessian of a cubic polynomial. We prove that the tangent bundle N = TM carries a canonical structure of ( affine) special Kahler manifold. This gives an intrinsic description of the r-map as the map M -> N = TM. On the physics side, this map corresponds to the dimensional reduction of rigid vector multiplets from 5 to 4 space-time dimensions. We generalise this construction to the case when M is any Hessian manifold.
引用
收藏
页码:579 / 590
页数:12
相关论文
共 12 条
[1]   Flows on quaternionic-Kahler and very special real manifolds [J].
Alekseevsky, DV ;
Cortés, V ;
Devchand, C ;
Van Proeyen, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (03) :525-543
[2]  
[Anonymous], 2007, GEOMETRY HESSIAN STR, DOI DOI 10.1142/6241
[3]   Abelian simply transitive affine groups of symplectic type [J].
Baues, O ;
Cortés, V .
ANNALES DE L INSTITUT FOURIER, 2002, 52 (06) :1729-+
[4]   Realisation of special Kahler manifolds as parabolic spheres [J].
Baues, O ;
Cortés, V .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) :2403-2407
[5]  
Cortés V, 2004, J HIGH ENERGY PHYS
[6]  
CORTES V, 2001, REND CIRC MAT PALE S, V66, P11
[7]   SPECIAL GEOMETRY, CUBIC POLYNOMIALS AND HOMOGENEOUS QUATERNIONIC SPACES [J].
DEWIT, B ;
VANPROEYEN, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :307-333
[8]   CONJUGATE CONNECTIONS AND RADON THEOREM IN AFFINE DIFFERENTIAL GEOMETRY [J].
DILLEN, F ;
NOMIZU, K ;
VRANKEN, L .
MONATSHEFTE FUR MATHEMATIK, 1990, 109 (03) :221-235
[9]   THE GEOMETRY OF N=2 MAXWELL-EINSTEIN SUPERGRAVITY AND JORDAN ALGEBRAS [J].
GUNAYDIN, M ;
SIERRA, G ;
TOWNSEND, PK .
NUCLEAR PHYSICS B, 1984, 242 (01) :244-268
[10]  
Nomizu K., 1994, CAMBRIDGE TRACTS MAT, V111