Anisotropic power-law inflation of the five dimensional scalar-vector and scalar-Kalb-Ramond model

被引:11
作者
Do, Tuan Q. [1 ]
Kao, W. F. [2 ]
机构
[1] Vietnam Natl Univ, VNU Univ Sci, Fac Phys, Hanoi 120000, Vietnam
[2] Chiao Tung Univ, Inst Phys, Hsinchu 30010, Taiwan
来源
EUROPEAN PHYSICAL JOURNAL C | 2018年 / 78卷 / 06期
关键词
COSMIC NO-HAIR; UNIVERSE; COSMOLOGIES; SCENARIO; FLATNESS; HORIZON;
D O I
10.1140/epjc/s10052-018-6008-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We will study the cosmological implications of the five dimensional scalar-vector and scalar-Kalb-Ramond model. In particular, a new set of Bianchi type I power-law analytic solution will be obtained for this model. The cosmic no-hair conjecture can be shown to break down in the presence of the scalar-vector and scalar-Kalb-Ramond couplings. The effect of the Kalb-Ramond field in the presence of the power-law solution will be shown explicitly. We will also show that the presence of a phantom field does, however, destabilize the corresponding Bianchi type I power-law inflationary solutions.
引用
收藏
页数:17
相关论文
共 115 条
  • [1] Primordial statistical anisotropies: the effective field theory approach
    Abolhasani, Ali Akbar
    Akhshik, Mohammad
    Emami, Razieh
    Firouzjahi, Hassan
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (03):
  • [2] Planck 2015 results XVI. Isotropy and statistics of the CMB
    Ade, P. A. R.
    Aghanim, N.
    Akrami, Y.
    Aluri, P. K.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Casaponsa, B.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Contreras, D.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Cruz, M.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 594
  • [3] Planck 2015 results XIII. Cosmological parameters
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Battye, R.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Chluba, J.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 594
  • [4] Large-scale magnetic fields from inflation due to a CPT-even Chern-Simons-like term with Kalb-Ramond and scalar fields
    Bamba, Kazuharu
    Geng, C. Q.
    Ho, S. H.
    Kao, W. F.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2012, 72 (04): : 1 - 10
  • [5] COSMIC NO-HAIR THEOREMS AND INFLATION
    BARROW, JD
    [J]. PHYSICS LETTERS B, 1987, 187 (1-2) : 12 - 16
  • [6] Barrow JD, 2006, PHYS REV D, V73, DOI [10.1103/PhysRevD.73.023007, 10.1103/PhysRevD.73.103520]
  • [7] Evolution of universes in quadratic theories of gravity
    Barrow, John D.
    Hervik, Sigbjorn
    [J]. PHYSICAL REVIEW D, 2006, 74 (12):
  • [8] Cosmologies in Horndeski's second-order vector-tensor theory
    Barrow, John D.
    Thorsrud, Mikjel
    Yamamoto, Kei
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (02):
  • [9] Simple types of anisotropic inflation
    Barrow, John D.
    Hervik, Sigbjorn
    [J]. PHYSICAL REVIEW D, 2010, 81 (02):
  • [10] Anisotropic power spectrum and bispectrum in the f(φ)F2 mechanism
    Bartolo, Nicola
    Matarrese, Sabino
    Peloso, Marco
    Ricciardone, Angelo
    [J]. PHYSICAL REVIEW D, 2013, 87 (02)