Weighted regularization of Maxwell equations in polyhedral domains - A rehabilitation of Nodal finite elements

被引:181
作者
Costabel, M [1 ]
Dauge, M [1 ]
机构
[1] Univ Rennes 1, IRMAR, Dept Math, F-35042 Rennes, France
关键词
D O I
10.1007/s002110100388
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new method of regularizing time harmonic Maxwell equations by a grad-div term adapted to the geometry of the domain. This method applies to polygonal domains in two dimensions as well as to polyhedral domains in three dimensions. In the presence of reentrant corners or edges, the usual regularization is known to produce wrong solutions due the non-density of smooth fields in the variational space. We get rid of this undesirable effect by the introduction of special weights inside the divergence integral. Standard finite elements can then be used for the approximation of the solution. This method proves to be numerically efficient.
引用
收藏
页码:239 / 277
页数:39
相关论文
共 50 条
  • [21] A Priori Analysis of an Anisotropic Finite Element Method for Elliptic Equations in Polyhedral Domains
    Li, Hengguang
    Nicaise, Serge
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2021, 21 (01) : 145 - 177
  • [22] Plane wave ℋ (curl; Ω) conforming finite elements for Maxwell's equations
    P. D. Ledger
    K. Morgan
    O. Hassan
    N. P. Weatherill
    Computational Mechanics, 2003, 31 : 272 - 283
  • [23] TIME-DOMAIN INTEGRATION OF THE MAXWELL EQUATIONS ON FINITE-ELEMENTS
    LYNCH, DR
    PAULSEN, KD
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1990, 38 (12) : 1933 - 1942
  • [24] Efficient mixed finite elements for Maxwell's equations in time domain
    Cohen, G
    Ferrières, X
    Monk, P
    Pernet, S
    ULTRA-WIDEBAND, SHORT-PULSE ELECTROMAGNETICS 6, 2003, : 251 - 259
  • [25] Weighted edge finite element method for Maxwell’s equations with strong singularity
    V. A. Rukavishnikov
    A. O. Mosolapov
    Doklady Mathematics, 2013, 87 : 156 - 159
  • [26] Weighted edge finite element method for Maxwell's equations with strong singularity
    Rukavishnikov, V. A.
    Mosolapov, A. O.
    DOKLADY MATHEMATICS, 2013, 87 (02) : 156 - 159
  • [27] A S/V potential method for Maxwell's equations near corners using nodal elements
    Boyse, WE
    Paulsen, KD
    1997 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS I-III: HIGH FREQUENCIES IN HIGH PLACES, 1997, : 1547 - 1550
  • [28] Plane wave H(curl; Ω) conforming finite elements for Maxwell's equations
    Ledger, PD
    Morgan, K
    Hassan, O
    Weatherill, NP
    COMPUTATIONAL MECHANICS, 2003, 31 (3-4) : 272 - 283
  • [29] High-dimensional finite elements for multiscale Maxwell-type equations
    Van Tiep Chu
    Viet Ha Hoang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) : 227 - 270
  • [30] High dimensional finite elements for two-scale Maxwell wave equations
    Van Tiep Chu
    Viet Ha Hoang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 375 (375)