Artificial Intelligence in Nuclear Medicine

被引:104
作者
Nensa, Felix [1 ]
Demircioglu, Aydin [1 ]
Rischpler, Christoph [2 ]
机构
[1] Univ Duisburg Essen, Univ Hosp Essen, Dept Diagnost & Intervent Radiol & Neuroradiol, Hufelandstr 55, D-45147 Essen, Germany
[2] Univ Duisburg Essen, Univ Hosp Essen, Dept Nucl Med, Essen, Germany
关键词
artificial intelligence; machine learning; deep learning; nuclear medicine; medical imaging; CONVOLUTIONAL NEURAL-NETWORK; MODEL; CLASSIFICATION; RECONSTRUCTION; RADIOLOGY; DISEASE; CANCER; IMAGES; PET/CT; CT;
D O I
10.2967/jnumed.118.220590
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Despite the great media attention for artificial intelligence (AI), for many health care professionals the term and the functioning of AI remain a "black box,"leading to exaggerated expectations on the one hand and unfounded fears on the other. In this review, we provide a conceptual classification and a brief summary of the technical fundamentals of AI. Possible applications are discussed on the basis of a typical work flow in medical imaging, grouped by planning, scanning, interpretation, and reporting. The main limitations of current AI techniques, such as issues with interpretability or the need for large amounts of annotated data, are briefly addressed. Finally, we highlight the possible impact of AI on the nuclear medicine profession, the associated challenges and, last but not least, the opportunities.
引用
收藏
页码:29S / 37S
页数:9
相关论文
共 78 条
  • [1] [Anonymous], 2018, Journal of Digital Imaging
  • [2] Ansart M, 2019, STAT METHODS MED RES
  • [3] Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
    Anthimopoulos, Marios
    Christodoulidis, Stergios
    Ebner, Lukas
    Christe, Andreas
    Mougiakakou, Stavroula
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1207 - 1216
  • [4] Cardiac MRI Texture Analysis of T1 and T2 Maps in Patients with Infarctlike Acute Myocarditis
    Baessler, Bettina
    Luecke, Christian
    Lorz, Julia
    Klingel, Karin
    von Roeder, Maximilian
    de Waha, Suzanne
    Besler, Christian
    Maintz, David
    Gutberlet, Matthias
    Thiele, Holger
    Lurz, Philipp
    [J]. RADIOLOGY, 2018, 289 (02) : 357 - 365
  • [5] Using convolutional neural networks to estimate time-of-flight from PET detector waveforms
    Berg, Eric
    Cherry, Simon R.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (02)
  • [6] Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study
    Betancur, Julian
    Hu, Lien-Hsin
    Commandeur, Frederic
    Sharir, Tali
    Einstein, Andrew J.
    Fish, Mathews B.
    Ruddy, Terrence D.
    Kaufmann, Philipp A.
    Sinusas, Albert J.
    Miller, Edward J.
    Bateman, Timothy M.
    Dorbala, Sharmila
    Di Carli, Marcelo
    Germano, Guido
    Otaki, Yuka
    Liang, Joanna X.
    Tamarappoo, Balaji K.
    Dey, Damini
    Berman, Daniel S.
    Slomka, Piotr J.
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (05) : 664 - 670
  • [7] Prognostic Value of Combined Clinical and Myocardial Perfusion Imaging Data Using Machine Learning
    Betancur, Julian
    Otaki, Yuka
    Motwani, Manish
    Fish, Mathews B.
    Lemley, Mark
    Dey, Damini
    Gransar, Heidi
    Tamarappoo, Balaji
    Germano, Guido
    Sharir, Tali
    Berman, Daniel S.
    Slomka, Piotr J.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2018, 11 (07) : 1000 - 1009
  • [8] Buolamwini J, 2018, C FAIRN ACC TRANSP, V81, P1, DOI DOI 10.2147/OTT.S126905
  • [9] Caliskan A, SEMANTICS DERIVED AU
  • [10] Will machine learning end the viability of radiology as a thriving medical specialty?
    Chan, Stephen
    Siegel, Eliot L.
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2019, 92 (1094)