On self-clique graphs with triangular cliques

被引:0
作者
Larrion, F. [1 ]
Pizana, M. A. [2 ]
Villarroel-Flores, R. [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Autonoma Metropolitana, Dept Ingn Elect, Mexico City 09340, DF, Mexico
[3] Univ Autonoma Estado Hidalgo, Ctr Invest Matemat, Pachuca 42184, Hgo, Mexico
关键词
Clique graphs; Self-clique graphs; Regular graphs;
D O I
10.1016/j.disc.2015.08.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is an {r, s}-graph if the set of degrees of their vertices is {r, s}. A clique of a graph is a maximal complete subgraph. The clique graph K (G) of a graph G is the intersection graph of all its cliques. A graph G is self-clique if G is isomorphic to K (G). We show the existence of self-clique {5, 6}-graphs whose cliques are all triangles, thus solving a problem posed by Chia and Ong (2012). (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:457 / 459
页数:3
相关论文
共 25 条
  • [1] [Anonymous], 1995, Graph Dynamics
  • [2] BALAKRISHNAN R, 1986, UTILITAS MATHEMATICA, V29, P263
  • [3] Self-clique graphs and matrix permutations
    Bondy, A
    Durán, G
    Lin, MC
    Szwarcfiter, JL
    [J]. JOURNAL OF GRAPH THEORY, 2003, 44 (03) : 178 - 192
  • [4] Self-clique Helly circular-arc graphs
    Bonomo, F
    [J]. DISCRETE MATHEMATICS, 2006, 306 (06) : 595 - 597
  • [5] Chia GL, 2012, ARS COMBINATORIA, V105, P435
  • [6] On self-clique graphs with given clique sizes, II
    Chia, G. L.
    Ong, Poh-Hwa
    [J]. DISCRETE MATHEMATICS, 2009, 309 (06) : 1538 - 1547
  • [7] On self-clique graphs with given clique sizes
    Chia, GL
    [J]. DISCRETE MATHEMATICS, 2000, 212 (03) : 185 - 189
  • [8] Escalante F., 1973, ABH MATH SEM HAMBURG, V39, P59
  • [9] On the Iterated Biclique Operator
    Groshaus, Marina
    Montero, Leandro P.
    [J]. JOURNAL OF GRAPH THEORY, 2013, 73 (02) : 181 - 190
  • [10] Hazan S, 1996, ORDER, V13, P219