Enriched categories as a free cocompletion

被引:0
|
作者
Garner, Richard [1 ]
Shulman, Michael [2 ,3 ]
机构
[1] Macquarie Univ, Dept Comp, N Ryde, NSW 2109, Australia
[2] Inst Adv Study, Dept Math, Olden Lane, Princeton, NJ 08540 USA
[3] Univ San Diego, Dept Math & Comp Sci, San Diego, CA 92110 USA
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Enriched bicategory theory; Enriched categories; Free cocompletions; Equipments; MONADS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper has two objectives. The first is to develop the theory of bicategories enriched in a monoidal bicategory categorifying the classical theory of categories enriched in a monoidal category up to a description of the free cocompletion of an enriched bicategory under a class of weighted bicolimits. The second objective is to describe a universal property of the process assigning to a monoidal category V the equipment of V-enriched categories, functors, transformations, and modules; we do so by considering, more generally, the assignation sending an equipment C to the equipment of C-enriched categories, functors, transformations, and modules, and exhibiting this as the free cocompletion of a certain kind of enriched bicategory under a certain class of weighted bicolimits. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 94
页数:94
相关论文
共 50 条
  • [1] Restriction categories as enriched categories
    Cockett, Robin
    Garner, Richard
    THEORETICAL COMPUTER SCIENCE, 2014, 523 : 37 - 55
  • [2] Internal Enriched Categories
    Enrico Ghiorzi
    Applied Categorical Structures, 2022, 30 : 947 - 968
  • [3] Internal Enriched Categories
    Ghiorzi, Enrico
    APPLIED CATEGORICAL STRUCTURES, 2022, 30 (05) : 947 - 968
  • [4] SEGAL ENRICHED CATEGORIES AND APPLICATIONS
    Bacard, Hugo, V
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 1227 - 1267
  • [5] Grothendieck categories of enriched functors
    Al Hwaeer, Hassan
    Garkusha, Grigory
    JOURNAL OF ALGEBRA, 2016, 450 : 204 - 241
  • [6] Algebras of Higher Operads as Enriched Categories
    Michael Batanin
    Mark Weber
    Applied Categorical Structures, 2011, 19 : 93 - 135
  • [7] COLIMITS IN ENRICHED ?-CATEGORIES AND DAY CONVOLUTION
    Hinich, Vladimir
    THEORY AND APPLICATIONS OF CATEGORIES, 2023, 39
  • [8] Algebras of Higher Operads as Enriched Categories
    Batanin, Michael
    Weber, Mark
    APPLIED CATEGORICAL STRUCTURES, 2011, 19 (01) : 93 - 135
  • [9] Enriched functor categories for functor calculus
    Bandklayder, Lauren
    Bergner, Julia E.
    Griffiths, Rhiannon
    Johnson, Brenda
    Santhanam, Rekha
    TOPOLOGY AND ITS APPLICATIONS, 2022, 316
  • [10] Unitary braided-enriched monoidal categories
    Dell, Zachary
    Huston, Peter
    Penneys, David
    QUANTUM TOPOLOGY, 2024, 15 (3-4) : 567 - 632