Capacitive coupled non-zero I-V and type-II memristive properties of the NiFe2O4-TiO2 nanocomposite

被引:27
作者
Ahir, Namita A. [1 ]
Takaloo, Ashkan Vakilipour [2 ]
Nirmal, Kiran A. [1 ]
Kundale, Somnath S. [1 ]
Chougale, Mahesh Y. [3 ]
Bae, Jinho [3 ]
Kim, Deok-kee [4 ]
Dongale, Tukaram D. [1 ]
机构
[1] Shivaji Univ, Sch Nanosci & Biotechnol, Computat Elect & Nanosci Res Lab, Kolhapur 416004, Maharashtra, India
[2] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Ulsan 44919, South Korea
[3] Jeju Natl Univ, Dept Ocean Syst Engn, 102 Jejudaehakro, Jeju 63243, South Korea
[4] Sejong Univ, Dept Elect Engn, 209 Neungdong Ro, Seoul 05006, South Korea
基金
新加坡国家研究基金会;
关键词
Capacitive coupling; Type-II memristive effect; Non-zero hysteresis; Nanocomposite; Resistive switching; MEMORY; MECHANISM; DEVICE;
D O I
10.1016/j.mssp.2020.105646
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the present work, we have demonstrated the capacitive coupled non-zero and type-II hysteresis behavior of nickel ferrite (NFO)-titanium oxide (TiO2) nanocomposite. For this, NFO nanoparticles (NPs) and TiO2 NPs were synthesized using hydrothermal and sol-gel method, respectively. The NFO-TiO2 nanocomposite was prepared using a solid-state reaction method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscope, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The electrical results of the NFO-TiO2 memory device have shown non-zero I-V (unable to cross at origin), cross-over I-V and type-II hysteresis (tangential hysteresis loops) properties and their occurrence was depended upon the magnitude of the electrical stimulus. To further clarify the dominance of the memristive and type-II properties, we have calculated the charge-flux and non-transversal di/dv(t) characteristics of the device based on experimental results. The charge transport mechanisms were investigated and a plausible resistive switching mechanism was reported. Our investigations provide some insights to explain the non-zero and type-II hysteresis behavior of the memristive devices.
引用
收藏
页数:10
相关论文
共 61 条
[1]   Three Fingerprints of Memristor [J].
Adhikari, Shyam Prasad ;
Sah, Maheshwar Pd ;
Kim, Hyongsuk ;
Chua, Leon O. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2013, 60 (11) :3008-3021
[2]   Short-term memory in electric double-layer capacitors [J].
Allagui, Anis ;
Zhang, Di ;
Elwakil, Ahmed S. .
APPLIED PHYSICS LETTERS, 2018, 113 (25)
[3]   Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be 'self-crossing' [J].
Biolek, D. ;
Biolek, Z. ;
Biolkova, V. .
ELECTRONICS LETTERS, 2011, 47 (25) :1385-1386
[4]   Variation of a classical fingerprint of ideal memristor [J].
Biolek, Zdenek ;
Biolek, Dalibor ;
Biolkova, Viera ;
Kolka, Zdenek .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2016, 44 (05) :1202-1207
[5]   Memristive and Memory Impedance Behavior in a Photo-Annealed ZnO-rGO Thin-Film Device [J].
Cardarilli, Gian Carlo ;
Khanal, Gaurav Mani ;
Di Nunzio, Luca ;
Re, Marco ;
Fazzolari, Rocco ;
Kumar, Raj .
ELECTRONICS, 2020, 9 (02)
[6]   Organolead Halide Perovskites for Low Operating Voltage Multilevel Resistive Switching [J].
Choi, Jaeho ;
Park, Sunghak ;
Lee, Joohee ;
Hong, Kootak ;
Kim, Do-Hong ;
Moon, Cheon Woo ;
Park, Gyeong Do ;
Suh, Junmin ;
Hwang, Jinyeon ;
Kim, Soo Young ;
Jung, Hyun Suk ;
Park, Nam-Gyu ;
Han, Seungwu ;
Nam, Ki Tae ;
Jang, Ho Won .
ADVANCED MATERIALS, 2016, 28 (31) :6562-+
[7]   Memristor, Hodgkin-Huxley, and Edge of Chaos [J].
Chua, Leon .
NANOTECHNOLOGY, 2013, 24 (38)
[8]   Resistance switching memories are memristors [J].
Chua, Leon .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 102 (04) :765-783
[9]   MEMRISTIVE DEVICES AND SYSTEMS [J].
CHUA, LO ;
KANG, SM .
PROCEEDINGS OF THE IEEE, 1976, 64 (02) :209-223
[10]   MEMRISTOR - MISSING CIRCUIT ELEMENT [J].
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05) :507-+