Graphene-Based Membranes for CO2/CH4 Separation: Key Challenges and Perspectives

被引:29
|
作者
Goh, Kunli [1 ,2 ]
Karahan, H. Enis [1 ,2 ]
Yang, Euntae [1 ,2 ]
Bae, Tae-Hyun [3 ]
机构
[1] Nanyang Technol Univ, Singapore Membrane Technol Ctr, Singapore 637141, Singapore
[2] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
[3] Korea Adv Inst Sci & Technol, Dept Chem & Biomed Engn, Daejeon 305338, South Korea
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 14期
关键词
graphene-based material; CO2; separation; mixed-matrix membrane; F; (index); Robeson upper bound; graphene-based laminate; single-layer graphene; MIXED MATRIX MEMBRANES; HIGH-PERFORMANCE; GAS SEPARATION; ORGANIC FRAMEWORK; CO2; CAPTURE; OXIDE; SELECTIVITY; PERMEATION; DESALINATION; ADSORBENTS;
D O I
10.3390/app9142784
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Increasing demand to strengthen energy security has increased the importance of natural gas sweetening and biogas upgrading processes. Membrane-based separation of carbon dioxide (CO2) and methane (CH4) is a relatively newer technology, which offers several competitive advantages, such as higher energy-efficiency and cost-effectiveness, over conventional technologies. Recently, the use of graphene-based materials to elevate the performance of polymeric membranes have attracted immense attention. Herein, we do not seek to provide the reader with a comprehensive review of this topic but rather highlight the key challenges and our perspectives going ahead. We approach the topic by evaluating three mainstream membrane designs using graphene-based materials: (1) nanoporous single-layer graphene, (2) few- to multi-layered graphene-based stacked laminates, and (3) mixed-matrix membranes. At present, each design faces different challenges, including low scalability, high production cost, limited performance enhancement, and the lack of robust techno-economic review and systematic membrane design optimization. To help address these challenges, we have mapped out a technology landscape of the current graphene-based membrane research based on the separation performance enhancement, commercial viability, and production cost. Accordingly, we contend that future efforts devoted to advancing graphene-based membranes must be matched by progress in these strategic areas so as to realize practical and commercially relevant graphene-based membranes for CO2/CH4 separation and beyond.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Performance Enhancement of Polymeric Blend Membranes Incorporation of Methyl Diethanol amine for CO2/CH4 Separation
    Mushtaq, Asim
    Mukhtar, Hilmi
    Shariff, Azmi Mohd
    JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 2019, 41 (03): : 523 - 530
  • [42] 3D self assembled graphene based cellulose acetate mixed matrix membranes for CO2/CH4 separation: An investigation
    Nayak, Bharat
    Kuncharam, Bhanu Vardhan Reddy
    CARBON, 2025, 236
  • [43] Recent advances in graphene-based membranes for CO2 separation
    Zhao G.
    Pan G.
    Zhang Y.
    Yu H.
    Zhao M.
    Tang G.
    Liu Y.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (11): : 5896 - 5911
  • [44] Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation
    Nik, Omid Ghaffari
    Chen, Xiao Yuan
    Kaliaguine, Serge
    JOURNAL OF MEMBRANE SCIENCE, 2012, 413 : 48 - 61
  • [45] Current status and development of membranes for CO2/CH4 separation: A review
    Zhang, Yuan
    Sunarso, Jaka
    Liu, Shaomin
    Wang, Rong
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 12 : 84 - 107
  • [46] Efficient separation of CO2/CH4 by ionic liquids confined in graphene oxide: A molecular dynamics simulation
    Yan, Fang
    Guo, Yandong
    Wang, Zhenlei
    Zhao, Linlin
    Zhang, Xiaochun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 289
  • [47] Improved CO2/CH4 separation using a nanocomposite ionic liquid gel membrane
    Mandavi, Hamid Reza
    Azizi, Navid
    Arzani, Mehran
    Mohammadi, Toraj
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2017, 46 : 275 - 288
  • [48] Application of nanoporous graphene membranes in natural gas processing: Molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation
    Sun, Chengzhen
    Wen, Boyao
    Bai, Bofeng
    CHEMICAL ENGINEERING SCIENCE, 2015, 138 : 616 - 621
  • [49] AlPO-18 membranes for CO2/CH4 and N2/CH4 separations
    Liu, Wen
    Tu, Ying
    Lu, Jun
    Liu, Yinuo
    Wu, Ting
    Gui, Tian
    Chen, Xiangshu
    Kita, Hidetoshi
    MICROPOROUS AND MESOPOROUS MATERIALS, 2023, 348
  • [50] SAPO-34 membranes for CO2/CH4 separation
    Li, SG
    Falconer, JL
    Noble, RD
    JOURNAL OF MEMBRANE SCIENCE, 2004, 241 (01) : 121 - 135