Metagenomic Approaches to Analyze Antimicrobial Resistance: An Overview

被引:46
作者
de Abreu, Vinicius A. C. [1 ]
Perdigao, Jose [1 ]
Almeida, Sintia [2 ]
机构
[1] Univ Fed Para, Fac Comp FACOMP, Lab Bioinformat & Comp Alto Desempenho LaBioCad, Belem, Para, Brazil
[2] Univ Fed Fortaleza, Dept Fisiol & Farmacol, Nucleo Pesquisa & Desenvolvimento Medicamentos NP, Cent Genom & Bioinformat CeGenBio, Fortaleza, Ceara, Brazil
关键词
antimicrobial resistance genes; horizontal gene transfer; metagenomic analysis; resistome; Shotgun metagenome sequencing; database; ANTIBIOTIC-RESISTANCE; ENTEROCOCCUS-FAECALIS; GENE; MECHANISMS; SEARCH; SOIL; CHLORAMPHENICOL; ENVIRONMENT; EXPLORATION; GENERATION;
D O I
10.3389/fgene.2020.575592
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Antimicrobial resistance is a major global public health problem, which develops when pathogens acquire antimicrobial resistance genes (ARGs), primarily through genetic recombination between commensal and pathogenic microbes. The resistome is a collection of all ARGs. In microorganisms, the primary method of ARG acquisition is horizontal gene transfer (HGT). Thus, understanding and identifying HGTs, can provide insight into the mechanisms of antimicrobial resistance transmission and dissemination. The use of high-throughput sequencing technologies has made the analysis of ARG sequences feasible and accessible. In particular, the metagenomic approach has facilitated the identification of community-based antimicrobial resistance. This approach is useful, as it allows access to the genomic data in an environmental sample without the need to isolate and culture microorganisms prior to analysis. Here, we aimed to reflect on the challenges of analyzing metagenomic data in the three main approaches for studying antimicrobial resistance: (i) analysis of microbial diversity, (ii) functional gene analysis, and (iii) searching the most complete and pertinent resistome databases.
引用
收藏
页数:9
相关论文
共 109 条
  • [21] Metagenomics: aid to combat antimicrobial resistance in diarrhea
    De, Rituparna
    [J]. GUT PATHOGENS, 2019, 11 (01)
  • [22] Cationic peptides: Distribution and mechanisms of resistance
    Devine, DA
    Hancock, REW
    [J]. CURRENT PHARMACEUTICAL DESIGN, 2002, 8 (09) : 703 - 714
  • [23] Oxazolidinone antibiotics
    Diekema, DJ
    Jones, RN
    [J]. LANCET, 2001, 358 (9297) : 1975 - 1982
  • [24] An Integrated Pipeline for Annotation and Visualization of Metagenomic Contigs
    Dong, Xiaoli
    Strous, Marc
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [25] MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data
    Doster, Enrique
    Lakin, Steven M.
    Dean, Christopher J.
    Wolfe, Cory
    Young, Jared G.
    Boucher, Christina
    Belk, Keith E.
    Noyes, Noelle R.
    Morley, Paul S.
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) : D561 - D569
  • [26] Search and clustering orders of magnitude faster than BLAST
    Edgar, Robert C.
    [J]. BIOINFORMATICS, 2010, 26 (19) : 2460 - 2461
  • [27] Environmental resistome risks of wastewaters and aquatic environments deciphered by shotgun metagenomic assembly
    Ekwanzala, Mutshiene Deogratias
    Dewar, John Barr
    Momba, Maggy Ndombo Benteke
    [J]. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 197
  • [28] Eloe-Fadrosh EA, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2015.32, 10.1038/nmicrobiol.2015.32]
  • [29] Enne VI, 2010, METHODS MOL BIOL, V642, P29, DOI 10.1007/978-1-60327-279-7_3
  • [30] Analysis of sequencing strategies and tools for taxonomic annotation: Defining standards for progressive metagenomics
    Escobar-Zepeda, Alejandra
    Ernestina Godoy-Lozano, Elizabeth
    Raggi, Luciana
    Segovia, Lorenzo
    Merino, Enrique
    Maria Gutierrez-Rios, Rosa
    Juarez, Katy
    Licea-Navarro, Alexei F.
    Pardo-Lopez, Liliana
    Sanchez-Flores, Alejandro
    [J]. SCIENTIFIC REPORTS, 2018, 8