Effect of through-plane polytetrafluoroethylene distribution in gas diffusion layers on performance of proton exchange membrane fuel cells

被引:44
|
作者
Ito, Hiroshi [1 ]
Iwamura, Takuya [1 ]
Someya, Satoshi [1 ]
Munakata, Tetsuo [1 ]
Nakano, Akihiro [1 ]
Heo, Yun [2 ]
Ishida, Masayoshi [2 ]
Nakajima, Hironori [3 ]
Kitahara, Tatsumi [3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Inst Energy Conservat, 1-2-1 Namiki, Tsukuba, Ibaraki 3058564, Japan
[2] Univ Tsukuba, Dept Engn Mech & Energy, 1-1-1 Tennoudai, Tsukuba, Ibaraki 3058573, Japan
[3] Kyushu Univ, Dept Mech Engn, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
基金
日本科学技术振兴机构;
关键词
Proton exchange membrane fuel cell; Gas diffusion layer; PTFE distribution; Water breakthrough pressure; Contact angle; MICRO-POROUS LAYER; HYDROPHOBIC POLYMER CONTENT; COMPOSITE CARBON-BLACK; MICROPOROUS LAYER; WATER DISTRIBUTION; PEMFC; TRANSPORT; BREAKTHROUGH; MANAGEMENT; THICKNESS;
D O I
10.1016/j.jpowsour.2015.12.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This experimental study identifies the effect of through-plane polytetrafluoroethylene (PTFE) distribution in gas diffusion backing (GDB) on the performance of proton exchange membrane fuel cells (PEMFC). PTFE-drying under vacuum pressure created a relatively uniform PTFE distribution in GDB compared to drying under atmospheric pressure. Carbon paper samples with different PTFE distributions due to the difference in drying conditions were prepared and used for the cathode gas diffusion layer (GDL) of PEMFCs. Also investigated is the effect of MPL application on the performance for those samples. The current density (i) - voltage (V) characteristics of these PEMFCs measured under high relative humidity conditions clearly showed that, with or without MPL, the cell using the GDL with PTFE dried under vacuum condition showed better performance than that dried under atmospheric condition. It is suggested that this improved performance is caused by the efficient transport of liquid water through the GDB due to the uniform distribution of PTFE. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:289 / 299
页数:11
相关论文
共 50 条
  • [41] Effects of the carbon black properties in gas diffusion layer on the performance of proton exchange membrane fuel cells
    Wang, Xinyuan
    Liu, Yu-Ting
    Zhang, Xiao-Fang
    Song, Hongyan
    Wu, Gang-Ping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (73) : 28528 - 28538
  • [42] A review on gas diffusion layer in proton exchange membrane fuel cell: Materials and manufacturing
    Luo, Chuan Xu
    Choo, Hui Leng
    Ahmad, Hafisoh
    Sivasankaran, Praveena Nair
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2024, 238 (6-7) : 785 - 796
  • [43] Evaluating Breakthrough Pressure in Gas Diffusion Layers of Proton Exchange Membrane Fuel Cells
    Ma Yue
    Jia Li
    Zhang Zhuqian
    Wang Xia
    JOURNAL OF THERMAL SCIENCE, 2010, 19 (05) : 459 - 464
  • [44] Evaluating breakthrough pressure in gas diffusion layers of proton exchange membrane fuel cells
    Yue Ma
    Jia Li
    Zhuqian Zhang
    Xia Wang
    Journal of Thermal Science, 2010, 19 : 459 - 464
  • [45] In-plane gas permeability of proton exchange membrane fuel cell gas diffusion layers
    Tamayol, A.
    Bahrami, M.
    JOURNAL OF POWER SOURCES, 2011, 196 (07) : 3559 - 3564
  • [46] Investigating effect of different gas diffusion layers on water droplet characteristics for proton exchange membrane (PEM) fuel cells
    Patel, Virat
    Battrell, Logan
    Anderson, Ryan
    Zhu, Ning
    Zhang, Lifeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (33) : 18340 - 18350
  • [47] Effects of a microporous layer on the performance degradation of proton exchange membrane fuel cells through repetitive freezing
    Lee, Yongtaek
    Kim, Bosung
    Kim, Yongchan
    Li, Xianguo
    JOURNAL OF POWER SOURCES, 2011, 196 (04) : 1940 - 1947
  • [48] A novel approach to determine the in-plane thermal conductivity of gas diffusion layers in proton exchange membrane fuel cells
    Sadeghi, E.
    Djilali, N.
    Bahrami, M.
    JOURNAL OF POWER SOURCES, 2011, 196 (07) : 3565 - 3571
  • [49] Determination of the τ/ε-Ratio for Gas Diffusion Substrates and Microporous Layers in a Proton Exchange Membrane Fuel Cell
    Berger, Anne
    Striednig, Michael
    Simon, Christoph
    Gasteiger, Hubert A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (01)
  • [50] Effect of Pore Former on Carbon Black-Polytetrafluoroethylene-Based Monolithic Gas Diffusion Media for Proton Exchange Membrane Fuel Cells
    Kattamanchi, Sruthi
    Palakurthi, Karthik
    Haridoss, Prathap
    ENERGY TECHNOLOGY, 2020, 8 (07)