Shift equivalence and the Conley index

被引:60
作者
Franks, J [1 ]
Richeson, D
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48023 USA
关键词
D O I
10.1090/S0002-9947-00-02488-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce filtration pairs for an isolated invariant set of continuous maps. We prove the existence of filtration pairs and show that, up to shift equivalence, the induced map on the corresponding pointed space is an invariant of the isolated invariant set. Moreover, the maps defining the shift equivalence can be chosen canonically. Last, we define partially ordered Morse decompositions and prove the existence of Morse set filtrations for such decompositions.
引用
收藏
页码:3305 / 3322
页数:18
相关论文
共 12 条
[1]   HOMOLOGY FOR ZERO-DIMENSIONAL NON-WANDERING SETS [J].
BOWEN, R ;
FRANKS, J .
ANNALS OF MATHEMATICS, 1977, 106 (01) :73-92
[2]  
Conley C., 1978, CBMS Regional Conference Series in Mathematics, V38
[3]   ISOLATING BLOCKS AND EPSILON CHAINS FOR MAPS [J].
EASTON, R .
PHYSICA D, 1989, 39 (01) :95-110
[5]   THE CONNECTION MATRIX-THEORY FOR MORSE DECOMPOSITIONS [J].
FRANZOSA, RD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 311 (02) :561-592
[7]  
RICHESON D, 1998, THESIS NW U
[8]   DYNAMICAL-SYSTEMS, SHAPE-THEORY AND THE CONLEY INDEX [J].
ROBBIN, JW ;
SALAMON, D .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1988, 8 :375-393
[9]   LYAPUNOV MAPS, SIMPLICIAL COMPLEXES AND THE STONE FUNCTOR [J].
ROBBIN, JW ;
SALAMON, DA .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 :153-183