Optimal control of a class of reaction-diffusion systems

被引:10
|
作者
Casas, Eduardo [1 ]
Ryll, Christopher [2 ]
Troeltzsch, Fredi [2 ]
机构
[1] Univ Cantabria, Dept Matemat Aplicada & Ciencias Comp, ETSI Ind & Telecomunicac, E-39005 Santander, Spain
[2] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
Optimal control; Reaction diffusion equations; Pointwise control constraints; Pointwise state constraints; Necessary optimality conditions; Propagating spot solutions; SPARSE OPTIMAL-CONTROL; PONTRYAGINS PRINCIPLE; BOUNDARY CONTROL; STATE; PATTERNS; SCHLOGL;
D O I
10.1007/s10589-018-9986-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The optimal control of a system of nonlinear reaction-diffusion equations is considered that covers several important equations of mathematical physics. In particular equations are covered that develop traveling wave fronts, spiral waves, scroll rings, or propagating spot solutions. Well-posedness of the system and differentiability of the control-to-state mapping are proved. Associated optimal control problems with pointwise constraints on the control and the state are discussed. The existence of optimal controls is proved under weaker assumptions than usually expected. Moreover, necessary first-order optimality conditions are derived. Several challenging numerical examples are presented that include in particular an application of pointwise state constraints where the latter prevent a moving localized spot from hitting the domain boundary.
引用
收藏
页码:677 / 707
页数:31
相关论文
共 50 条
  • [11] Optimal control of a system of reaction-diffusion equations modeling the wine fermentation process
    Merger, Juri
    Borzi, Alfio
    Herzog, Roland
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2017, 38 (01) : 112 - 132
  • [12] Optimal Control Allocation for 2D Reaction-Diffusion Equations With Multiple Locally Distributed Inputs
    Cristofaro, Andrea
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2025, 46 (02) : 676 - 683
  • [13] OPTIMAL CONTROL OF ADVECTIVE DIRECTION IN REACTION-DIFFUSION POPULATION MODELS
    Finotti, Heather
    Lenhart, Suzanne
    Van Phan, Tuoc
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2012, 1 (01): : 81 - 107
  • [14] THE OPTIMAL CONTROL OF AN HIV/AIDS REACTION-DIFFUSION EPIDEMIC MODEL
    Chorfi, Nouar
    Bendoukha, Samir
    Abdelmalek, Salem
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [15] Boundary control of linear stochastic reaction-diffusion systems
    Wu, Kai-Ning
    Liu, Xiao-Zhen
    Shi, Peng
    Lim, Cheng-Chew
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (01) : 268 - 282
  • [16] Optimal control of dengue vector based on a reaction-diffusion model?
    Li, Yazhi
    Wang, Yan
    Liu, Lili
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 203 : 250 - 270
  • [17] Optimal control of fractional reaction-diffusion equations with Poisson jumps
    Durga, N.
    Muthukumar, P.
    JOURNAL OF ANALYSIS, 2019, 27 (02) : 605 - 621
  • [18] Optimal Control Problem for Cancer Invasion Reaction-Diffusion System
    Shangerganesh, Lingeshwaran
    Sowndarrajan, Puthur Thangaraj
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (14) : 1574 - 1593
  • [19] Optimal control of fractional reaction-diffusion equations with Poisson jumps
    N. Durga
    P. Muthukumar
    The Journal of Analysis, 2019, 27 : 605 - 621
  • [20] Optimal Control Problem for a Reaction-Diffusion System of Three Populations
    Wang, Xiaoni
    Guo, Gaihui
    Li, Jian
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (04) : 808 - 828