Mixed Co, Cu and Mn-based Metal Oxides for Thermochemical Energy Storage Application

被引:4
|
作者
Andre, Laurie [1 ]
Abanades, Stephane [1 ]
Cassayre, Laurent [2 ]
机构
[1] PROMES CNRS, Proc Mat & Solar Energy Lab, 7 Rue Four Solaire, F-66120 Font Romeu, France
[2] Univ Toulouse, CNRS, INPT, Lab Genie Chim,UPS, Toulouse, France
来源
INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2017) | 2018年 / 2033卷
关键词
HIGH-TEMPERATURE; PHASE-EQUILIBRIA; SYSTEM;
D O I
10.1063/1.5067124
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The potential of metal oxides for thermochemical heat storage in solar power plants at high temperature via reversible redox reactions has been largely demonstrated, and cobalt oxide and manganese oxide commonly appear as the most attractive simple oxides. However, drawbacks of pure oxides such as slow reaction kinetics, low reversibility, loss-in-capacity over cycles or sintering, could be tackled by the addition of a secondary oxide This work presents the experimental evaluation of mixed oxides from the Co-Cu-O, Mn-Cu-O, and Co-Mn-O systems. Within the studied series of mixed oxides, the Co-Cu-O system with low amounts of Cu (<= 10 mol%) shows very good cycling stability and high reaction enthalpy (similar to 570 kJ.kg(-1)). Among the mixed oxides studied in the Mn-Cu-O system, the compositions with Cu amounts in the range 40-80 mol% feature promising redox properties with complete reaction reversibility, even though sintering remains an issue. In contrast, compositions with Cu amounts below 30 mol% cannot be cycled because of the formation of the hausmannite phase during reduction, which inhibits further reoxidation. The compositions with less than 40% Mn in the Co-Mn-O system retain an interesting enthalpy for thermochemical energy storage in CSP plants for a cheaper material than pure cobalt oxide, but the reaction enthalpy decreases with the Mn content. In this system, the cycling ability is lost over 70 mol% Mn due to hausmanite phase formation, similarly to the case of Mn-Cu-O system.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Thermochemical Energy Storage Performance Analysis of (Fe,Co,Mn)Ox Mixed Metal Oxides
    Dessie, Yabibal Getahun
    Hong, Qi
    Lougou, Bachirou Guene
    Zhang, Juqi
    Jiang, Boshu
    Anees, Junaid
    Tegegne, Eyale Bayable
    CATALYSTS, 2021, 11 (03) : 1 - 23
  • [2] Thermogravimetric analysis of Cu, Mn, Co, and Pb oxides for thermochemical energy storage
    Silakhori, Mahyar
    Jafarian, Mehdi
    Arjomandi, Maziar
    Nathan, Graham J.
    JOURNAL OF ENERGY STORAGE, 2019, 23 : 138 - 147
  • [3] Mixed Metal Oxide Systems Applied to Thermochemical Storage of Solar Energy: Benefits of Secondary Metal Addition in Co and Mn Oxides and Contribution of Thermodynamics
    Andre, Laurie
    Abanades, Stephane
    Cassayre, Laurent
    APPLIED SCIENCES-BASEL, 2018, 8 (12):
  • [4] Experimental Investigation of Co-Cu, Mn-Co, and Mn-Cu Redox Materials Applied to Solar Thermochemical Energy Storage
    Andre, Laurie
    Abanades, Stephane
    Cassayre, Laurent
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (07): : 3385 - 3395
  • [5] A Moving Bed Reactor for Thermochemical Energy Storage Based on Metal Oxides
    Preisner, Nicole Carina
    Linder, Marc
    ENERGIES, 2020, 13 (05)
  • [6] Metal oxides for thermochemical energy storage: A comparison of several metal oxide systems
    Block, Tina
    Schmuecker, Martin
    SOLAR ENERGY, 2016, 126 : 195 - 207
  • [7] Design of Efficient Mn-based Redox Materials for Thermochemical Heat Storage at High Temperatures
    Carrillo, Alfonso J.
    Serrano, David P.
    Pizarro, P.
    Coronado, Juan M.
    SOLARPACES 2015: INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, 2016, 1734
  • [8] Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 6: Testing of Mn-based combined oxides and porous structures
    Agrafiotis, Christos
    Block, Tina
    Senholdt, Marion
    Tescari, Stefania
    Roeb, Martin
    Sattler, Christian
    SOLAR ENERGY, 2017, 149 : 227 - 244
  • [9] Validated model of thermochemical energy storage based on cobalt oxides
    Zhou, Xin
    Mahmood, Mariam
    Chen, Jinli
    Yang, Tianfeng
    Xiao, Gang
    Ferrari, Mario L.
    APPLIED THERMAL ENGINEERING, 2019, 159
  • [10] Metal hydrides for thermochemical energy storage applications
    Choudhari, Manoj S.
    Sharma, Vinod Kumar
    Paswan, Manikant
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (10) : 14465 - 14492