Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study

被引:210
|
作者
Nayak, Soumya Ranjan [1 ]
Nayak, Deepak Ranjan [2 ]
Sinha, Utkarsh [1 ]
Arora, Vaibhav [1 ]
Pachori, Ram Bilas [3 ]
机构
[1] Amity Univ Uttar Pradesh, Amity Sch Engn & Technol, Noida, India
[2] Malaviya Natl Inst Technol, Dept Comp Sci & Engn, Jaipur, Rajasthan, India
[3] Indian Inst Technol Indore, Discipline Elect Engn, Indore, India
关键词
COVID-19; SARS-CoV-2; Optimization algorithms; Convolutional Neural Networks; Chest X-ray; CLASSIFICATION;
D O I
10.1016/j.bspc.2020.102365
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The emergence of Coronavirus Disease 2019 (COVID-19) in early December 2019 has caused immense damage to health and global well-being. Currently, there are approximately five million confirmed cases and the novel virus is still spreading rapidly all over the world. Many hospitals across the globe are not yet equipped with an adequate amount of testing kits and the manual Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test is time-consuming and troublesome. It is hence very important to design an automated and early diagnosis system which can provide fast decision and greatly reduce the diagnosis error. The chest X-ray images along with emerging Artificial Intelligence (AI) methodologies, in particular Deep Learning (DL) algorithms have recently become a worthy choice for early COVID-19 screening. This paper proposes a DL assisted automated method using X-ray images for early diagnosis of COVID-19 infection. We evaluate the effectiveness of eight pre-trained Convolutional Neural Network (CNN) models such as AlexNet, VGG-16, GoogleNet, MobileNet-V2, SqueezeNet, ResNet-34, ResNet-50 and Inception-V3 for classification of COVID-19 from normal cases. Also, comparative analyses have been made among these models by considering several important factors such as batch size, learning rate, number of epochs, and type of optimizers with an aim to find the best suited model. The models have been validated on publicly available chest X-ray images and the best performance is obtained by ResNet-34 with an accuracy of 98.33%. This study will be useful for researchers to think for the design of more effective CNN based models for early COVID-19 detection.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Covid-19 Detection from Chest X-Ray Images Using Advanced Deep Learning Techniques
    Mahajan, Shubham
    Raina, Akshay
    Abouhawwash, Mohamed
    Gao, Xiao-Zhi
    Pandit, Amit Kant
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (01): : 1541 - 1556
  • [2] Covid-19 Detection in Chest X-ray Images with Deep Learning
    Ozdemir, Zeynep
    Yalim Keles, Hacer
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [3] COVID-19 Detection in Chest X-ray Images using a Deep Learning Approach
    Saiz, Fatima A.
    Barandiaran, Inigo
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2020, 6 (02): : 11 - 14
  • [4] COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images
    Akter, Shamima
    Shamrat, F. M. Javed Mehedi
    Chakraborty, Sovon
    Karim, Asif
    Azam, Sami
    BIOLOGY-BASEL, 2021, 10 (11):
  • [5] Improved COVID-19 detection with chest x-ray images using deep learning
    Vedika Gupta
    Nikita Jain
    Jatin Sachdeva
    Mudit Gupta
    Senthilkumar Mohan
    Mohd Yazid Bajuri
    Ali Ahmadian
    Multimedia Tools and Applications, 2022, 81 : 37657 - 37680
  • [6] Improved COVID-19 detection with chest x-ray images using deep learning
    Gupta, Vedika
    Jain, Nikita
    Sachdeva, Jatin
    Gupta, Mudit
    Mohan, Senthilkumar
    Bajuri, Mohd Yazid
    Ahmadian, Ali
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 37657 - 37680
  • [7] COVID-19 Detection Using Chest X-Ray Images Based on Deep Learning
    Sani, Sudeshna
    Bera, Abhijit
    Mitra, Dipra
    Das, Kalyani Maity
    INTERNATIONAL JOURNAL OF SOFTWARE SCIENCE AND COMPUTATIONAL INTELLIGENCE-IJSSCI, 2022, 14 (01):
  • [8] COVID-19 Detection from Chest X-ray Images Based on Deep Learning Techniques
    Mathesul, Shubham
    Swain, Debabrata
    Satapathy, Santosh Kumar
    Rambhad, Ayush
    Acharya, Biswaranjan
    Gerogiannis, Vassilis C.
    Kanavos, Andreas
    ALGORITHMS, 2023, 16 (10)
  • [9] Chest X-ray Classification for the Detection of COVID-19 Using Deep Learning Techniques
    Khan, Ejaz
    Rehman, Muhammad Zia Ur
    Ahmed, Fawad
    Alfouzan, Faisal Abdulaziz
    Alzahrani, Nouf M.
    Ahmad, Jawad
    SENSORS, 2022, 22 (03)
  • [10] A deep learning based approach for automatic detection of COVID-19 cases using chest X-ray images
    Bhattacharyya, Abhijit
    Bhaik, Divyanshu
    Kumar, Sunil
    Thakur, Prayas
    Sharma, Rahul
    Pachori, Ram Bilas
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71