Marginal probability distribution determined by the maximum entropy method

被引:6
|
作者
Majerník, V [1 ]
机构
[1] Palacky Univ, Dept Theoret Phys, CZ-77207 Olomouc, Czech Republic
关键词
D O I
10.1016/S0034-4877(00)89030-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a formula for the probability distribution of a random variable if it is statistically dependent on other random variables of a stochastic system supposing that it is in its maximum entropy state. We assume that the conditional probability distribution is given and we use the maximum entropy principle for getting the marginal probability distribution. Such stochastic system may represent, e.g. homogeneous polymer, probabilistic cellular automaton, one-dimensional Ising system, or a string of symbols in communication.
引用
收藏
页码:171 / 181
页数:11
相关论文
共 50 条
  • [41] A probability distribution model based on the maximum entropy principle for wind power fluctuation estimation
    Wang, Lingzhi
    Wei, Lai
    Liu, Jun
    Qian, Fucai
    ENERGY REPORTS, 2022, 8 : 5093 - 5099
  • [42] Maximum Entropy for Determining the Transition Probability Matrix of a Markov Chain with a Specified Stationary Distribution
    Nikooravesh, Zohre
    THAILAND STATISTICIAN, 2020, 18 (02): : 235 - 242
  • [43] Bootstrap and Maximum Entropy Based Small-sample Product Lifetime Probability Distribution
    Suo, Hailong
    Gao, Jianmin
    Gao, Zhiyong
    Jiang, Hongqvan
    Wang, Rongxi
    IFAC PAPERSONLINE, 2015, 48 (03): : 219 - 224
  • [44] MAXIMUM ENTROPY METHOD
    KREINOVIC, VJ
    KOSHELEVA, OM
    NATURE, 1979, 281 (5733) : 708 - 709
  • [45] Maximum entropy method
    不详
    DISPERSION, COMPLEX ANALYSIS AND OPTICAL SPECTROSCOPY, 1999, 147 : 79 - 95
  • [46] On an inequality for the entropy of a probability distribution
    Matic, M
    Pearce, CEM
    Pecaric, J
    ACTA MATHEMATICA HUNGARICA, 1999, 85 (04) : 345 - 349
  • [47] On an inequality for the entropy of a probability distribution
    Jardas, C
    Pecaric, J
    Roki, R
    Sarapa, N
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (02): : 209 - 214
  • [48] On an Inequality for the Entropy of a Probability Distribution
    M. Matić
    C. E. M. Pearce
    J. Pečarić
    Acta Mathematica Hungarica, 1999, 85 : 345 - 349
  • [49] Maximum entropy approach to probability density estimation
    Tel Aviv Univ, Tel Aviv, Israel
    Int Conf Knowledge Based Intell Electron Syst Proc KES, (225-230):
  • [50] Maximum Entropy and Probability Kinematics Constrained by Conditionals
    Lukits, Stefan
    ENTROPY, 2015, 17 (04) : 1690 - 1700