Marginal probability distribution determined by the maximum entropy method

被引:6
|
作者
Majerník, V [1 ]
机构
[1] Palacky Univ, Dept Theoret Phys, CZ-77207 Olomouc, Czech Republic
关键词
D O I
10.1016/S0034-4877(00)89030-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a formula for the probability distribution of a random variable if it is statistically dependent on other random variables of a stochastic system supposing that it is in its maximum entropy state. We assume that the conditional probability distribution is given and we use the maximum entropy principle for getting the marginal probability distribution. Such stochastic system may represent, e.g. homogeneous polymer, probabilistic cellular automaton, one-dimensional Ising system, or a string of symbols in communication.
引用
收藏
页码:171 / 181
页数:11
相关论文
共 50 条
  • [31] Reconstruction of the electron momentum density distribution by the Maximum Entropy Method
    Dobrzynski, L
    Holas, A
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1996, 383 (2-3): : 589 - 600
  • [32] Reconstructing parton distribution function based on maximum entropy method
    Zhang, Shihan
    Wang, Xiaobin
    Lin, Tao
    Chang, Lei
    CHINESE PHYSICS C, 2024, 48 (03)
  • [33] RECONSTRUCTION OF A POLARIZED BRIGHTNESS DISTRIBUTION BY THE MAXIMUM-ENTROPY METHOD
    NITYANANDA, R
    NARAYAN, R
    ASTRONOMY & ASTROPHYSICS, 1983, 118 (01) : 194 - 196
  • [34] Distribution functions from moments and the maximum-entropy method
    Poland, D
    NUMERICAL COMPUTER METHODS, PT D, 2004, 383 : 427 - 465
  • [35] Maximum entropy method used in error distribution of flood forecast
    Zhou, Hui-Cheng
    Li, Li-Qin
    Wang, Ben-De
    Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology, 2007, 47 (03): : 408 - 413
  • [36] Reconstructing parton distribution function based on maximum entropy method
    张思翰
    王晓斌
    林涛
    常雷
    Chinese Physics C, 2024, 48 (03) : 50 - 55
  • [37] ELECTRON DENSITY DISTRIBUTION UN γ-CuBr BY THE MAXIMUM ENTROPY METHOD
    Ishibashi, H.
    Tamura, J.
    Nakahigashi, K.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1996, 52 : C349 - C349
  • [38] Calculating the Prior Probability Distribution for a Causal Network Using Maximum Entropy: Alternative Approaches
    Markham, Michael J.
    ENTROPY, 2011, 13 (07) : 1281 - 1304
  • [39] Class Probability Distribution Based Maximum Entropy Model for Classification of Datasets with Sparse Instances
    Arumugam, Saravanan
    Damotharan, Anandhi
    Marudhachalam, Srividya
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2023, 20 (03) : 949 - 976
  • [40] The principle of maximum entropy and the probability-weighted moments for estimating the parameters of the Kumaraswamy distribution
    Helu, Amal
    PLOS ONE, 2022, 17 (05):