Overconvergent real closed quantifier elimination

被引:10
作者
Lipshitz, L.
Robinson, Z.
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] E Carolina Univ, Dept Math, Greenville, NC 27858 USA
基金
美国国家科学基金会;
关键词
D O I
10.1112/S0024609306018832
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be the (real closed) field of Puiseux series in t over R endowed with the natural linear order. Then the elements of the formal power series rings R[xi(1),...,xi(n)] converge t-adically on [-t, t](n), and hence define functions [-t, t](n) -> K. Let L be the language of ordered fields, enriched with symbols for these functions. By Corollary 3.15, K is o-minimal in L. This result is obtained from a quantifier elimination theorem. The proofs use methods from non-Archimedean analysis.
引用
收藏
页码:897 / 906
页数:10
相关论文
共 8 条
[1]   An effective version of Wilkie's theorem of the complement and some effective o-minimality results [J].
Berarducci, A ;
Servi, T .
ANNALS OF PURE AND APPLIED LOGIC, 2004, 125 (1-3) :43-74
[2]  
Bosch S., 1984, Non-Archimedean analysis
[3]  
CLUCKERS R, IN PRESS ANN SCI ECO
[4]   P-ADIC AND REAL SUBANALYTIC SETS [J].
DENEF, J ;
VANDENDRIES, L .
ANNALS OF MATHEMATICS, 1988, 128 (01) :79-138
[5]  
Fresnel J., 2004, PROGR MATH, V218
[6]  
HRUSHOVSKI E, IN PRESS J SYMBOLIC
[7]  
SCHOUTENS H, 1994, COMPOS MATH, V94, P269
[8]  
VANDENDRIES L, 1996, LOGIC FDN APPL, P137