Liouville Type Theorems for PDE and IE Systems Involving Fractional Laplacian on a Half Space
被引:43
作者:
Dai, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ BUAA, Sch Math & Syst Sci, Beijing 100191, Peoples R ChinaBeihang Univ BUAA, Sch Math & Syst Sci, Beijing 100191, Peoples R China
Dai, Wei
[1
]
Liu, Zhao
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Jiangxi, Peoples R ChinaBeihang Univ BUAA, Sch Math & Syst Sci, Beijing 100191, Peoples R China
Liu, Zhao
[2
]
Lu, Guozhen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Connecticut, Dept Math, Storrs, CT 06269 USABeihang Univ BUAA, Sch Math & Syst Sci, Beijing 100191, Peoples R China
Lu, Guozhen
[3
]
机构:
[1] Beihang Univ BUAA, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[2] Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Jiangxi, Peoples R China
[3] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
Liouville type theorem;
Dirichlet problem;
Half space;
Method of moving planes in integral forms;
Nonexistence;
Rotational symmetry;
The fractional Laplacian;
SEMILINEAR ELLIPTIC-EQUATIONS;
ASYMPTOTIC SYMMETRY;
INTEGRAL-EQUATION;
R-N;
CLASSIFICATION;
NONEXISTENCE;
REGULARITY;
D O I:
10.1007/s11118-016-9594-6
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, let a be any real number between 0 and 2, we study the Dirichlet problem for semi- linear elliptic system involving the fractional Laplacian:... (- ) a/ 2u(x) = vq(x), x. Rn +, (- ) a/ 2v(x) = up(x), x. Rn +, u(x) = v(x) = 0, x/. Rn +. (1) We will first establish the equivalence between PDE problem (1) and the corresponding integral equation (IE) system (Lemma 2). Then we use the moving planes method in integral forms to establish our main theorem, a Liouville type theorem for the integral system (Theorem 3). Then we conclude the Liouville type theorem for the above differential system involving the fractional Laplacian (Corollary 4).
引用
收藏
页码:569 / 588
页数:20
相关论文
共 28 条
[1]
Bianchi G, 1997, COMMUN PART DIFF EQ, V22, P1671
机构:
Yeshiva Univ, Dept Math, New York, NY 10033 USAYeshiva Univ, Dept Math, New York, NY 10033 USA
Chen, Wenxiong
Fang, Yanqin
论文数: 0引用数: 0
h-index: 0
机构:
Yeshiva Univ, Dept Math, New York, NY 10033 USA
Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R ChinaYeshiva Univ, Dept Math, New York, NY 10033 USA
Fang, Yanqin
Yang, Ray
论文数: 0引用数: 0
h-index: 0
机构:
Courant Inst Math Sci, Dept Math, New York, NY 10012 USAYeshiva Univ, Dept Math, New York, NY 10033 USA
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453600, Henan, Peoples R China
Yeshiva Univ, Dept Math, New York, NY 10033 USAHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453600, Henan, Peoples R China
Chen, Wenxiong
Li, Congming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Dept Appl Math, Boulder, CO 80309 USAHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453600, Henan, Peoples R China
机构:
Yeshiva Univ, Dept Math, New York, NY 10033 USAYeshiva Univ, Dept Math, New York, NY 10033 USA
Chen, Wenxiong
Fang, Yanqin
论文数: 0引用数: 0
h-index: 0
机构:
Yeshiva Univ, Dept Math, New York, NY 10033 USA
Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R ChinaYeshiva Univ, Dept Math, New York, NY 10033 USA
Fang, Yanqin
Yang, Ray
论文数: 0引用数: 0
h-index: 0
机构:
Courant Inst Math Sci, Dept Math, New York, NY 10012 USAYeshiva Univ, Dept Math, New York, NY 10033 USA
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453600, Henan, Peoples R China
Yeshiva Univ, Dept Math, New York, NY 10033 USAHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453600, Henan, Peoples R China
Chen, Wenxiong
Li, Congming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Dept Appl Math, Boulder, CO 80309 USAHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453600, Henan, Peoples R China