Propagation of nondiffracting pulses carrying orbital angular momentum at microwave frequencies

被引:23
作者
Comite, D. [1 ]
Fuscaldo, W. [1 ,2 ]
Pavone, S. C. [3 ]
Valerio, G. [4 ]
Ettorre, M. [2 ]
Albani, M. [3 ]
Galli, A. [1 ]
机构
[1] Univ Roma Sapienza, Dipartimento Ingn Informaz Elettron & Telecomunic, Via Eudossiana 18, I-00184 Rome, Italy
[2] Univ Rennes 1, Inst Elect & Telecommun Rennes IETR, CNRS, UMR 6164, F-35042 Rennes, France
[3] Univ Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, Italy
[4] UPMC Univ Paris 06, Sorbonne Univ, UR2, L2E, F-75005 Paris, France
关键词
BESSEL BEAMS; APERTURE REALIZATIONS; MAXWELL EQUATIONS; WAVE-EQUATION; X-WAVES; GENERATION; LIGHT; DIFFRACTION; MODES;
D O I
10.1063/1.4978601
中图分类号
O59 [应用物理学];
学科分类号
摘要
We discuss the generation and propagation of nondiffracting twisted pulses at microwaves, obtained through polychromatic spectral superposition of higher-order Bessel beams. The inherent vectorial structure of Maxwell's equations has been considered to generalize the nondiffracting solution of the scalar wave equation with azimuthal phase variation. Since a wide frequency bandwidth is necessary to synthesize time-limited pulses, the non-negligible wavenumber frequency dispersion, which commonly affects the propagation in the microwave range, has been taken into account. For this purpose, a higher-order Bessel beam is generated by enforcing an inward cylindrical traveling-wave distribution over a finite aperture. We present and discuss the main aspects of the generation of twisted pulses in the microwave range, showing the promising possibility to carry orbital angular momentum through highly focused X-shaped pulses up to the nondiffractive range. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 42 条
  • [31] Unified description of Bessel X waves with cone dispersion and tilted pulses
    Porras, MA
    Valiulis, G
    Di Trapani, P
    [J]. PHYSICAL REVIEW E, 2003, 68 (01): : 11
  • [32] On localized "X-shaped" Superluminal solutions to Maxwell equations
    Recami, E
    [J]. PHYSICA A, 1998, 252 (3-4): : 586 - 610
  • [33] On the existence of undistorted progressive waves (UPWs) of arbitrary speeds 0<=nu<infinity in nature
    Rodrigues, WA
    Lu, JY
    [J]. FOUNDATIONS OF PHYSICS, 1997, 27 (03) : 435 - 508
  • [34] Evidence of X-shaped propagation-invariant localized light waves
    Saari, P
    Reivelt, K
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4135 - 4138
  • [35] Unified description of nondiffracting X and Y waves
    Salo, J
    Fagerholm, J
    Friberg, AT
    Salomaa, MM
    [J]. PHYSICAL REVIEW E, 2000, 62 (03): : 4261 - 4275
  • [36] Three-dimensional measurements of a millimeter wave orbital angular momentum vortex
    Schemmel, Peter
    Maccalli, Stefania
    Pisano, Giampaolo
    Maffei, Bruno
    Ng, Ming Wah Richard
    [J]. OPTICS LETTERS, 2014, 39 (03) : 626 - 629
  • [37] 'Complex source' wavefields: sources in real space
    Tagirdzhanov, Azat M.
    Blagovestchenskii, Alexander S.
    Kiselev, Aleksei P.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (42)
  • [38] Orbital angular momentum of a high-order Bessel light beam
    Volke-Sepulveda, K
    Garcés-Chávez, V
    Chávez-Cerda, S
    Arlt, J
    Dholakia, K
    [J]. JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2002, 4 (02) : S82 - S89
  • [39] Accelerating nondiffracting beams
    Yan, Shaohui
    Li, Manman
    Yao, Baoli
    Yu, Xianghua
    Lei, Ming
    Dan, Dan
    Yang, Yanlong
    Min, Junwei
    Peng, Tong
    [J]. PHYSICS LETTERS A, 2015, 379 (12-13) : 983 - 987
  • [40] Orbital angular momentum: origins, behavior and applications
    Yao, Alison M.
    Padgett, Miles J.
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2011, 3 (02): : 161 - 204