Skew exponential power stochastic volatility model for analysis of skewness, non-normal tails, quantiles and expectiles

被引:8
作者
Kobayashi, Genya [1 ]
机构
[1] Chiba Univ, Fac Law Polit & Econ, Inage Ku, 1-33 Yayoi Cho, Chiba 2658522, Japan
关键词
Bayesian expectile regression; Bayesian quantile regression; Double two-piece family; Foreign exchange return; Markov chain Monte Carlo; SIMULATION SMOOTHER; STUDENT-T; LIKELIHOOD; LEVERAGE; SAMPLER; RISK;
D O I
10.1007/s00180-015-0596-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a unified framework to analyse the skewness, tail heaviness, quantiles and expectiles of the return distribution based on a stochastic volatility model using a new parametrisation of the skew exponential power (SEP) distribution. The SEP distribution can express a wide range of distribution shapes through two shape parameters and one skewness parameter. Since the asymmetric Laplace and skew normal distributions are included as special cases, the proposed model is related to quantile regression and expectile regression. The efficient and simple Markov chain Monte Carlo estimation methods are also described. The proposed model is demonstrated using the simulated data and real data on daily return of foreign exchange rate.
引用
收藏
页码:49 / 88
页数:40
相关论文
共 62 条
[1]  
Aas K., 2006, Journal of Financial Econometrics, V4, P275, DOI [10.1093/jjfinec/nbj006, DOI 10.1093/jjfinec/nbj006]
[2]   Pair-copula constructions of multiple dependence [J].
Aas, Kjersti ;
Czado, Claudia ;
Frigessi, Arnoldo ;
Bakken, Henrik .
INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (02) :182-198
[3]  
[Anonymous], 1995, Journal of Derivatives, DOI DOI 10.3905/JOD.1995.407942
[4]  
[Anonymous], 1998, Econometric Reviews
[5]  
AZZALINI A, 1985, SCAND J STAT, V12, P171
[6]  
Azzalini A., 1986, STATISTICA, V46, P199
[7]  
Balakrishnan Narayanaswamy, 2009, Continuous Bivariate Distributions, DOI 10.1007/b101765
[8]  
Bauwens L., 2012, HDB VOLATILITY MODEL
[9]  
Bedford T, 2002, ANN STAT, V30, P1031
[10]   A new class of asymmetric exponential power densities with applications to economics and finance [J].
Bottazzi, Giulio ;
Secchi, Angelo .
INDUSTRIAL AND CORPORATE CHANGE, 2011, 20 (04) :991-1030