Investigation of asphaltene-derived formation damage and nano-confinement on the performance of CO2 huff-n-puff in shale oil reservoirs

被引:25
|
作者
Lee, Ji Ho [1 ]
Lee, Kun Sang [1 ]
机构
[1] Hanyang Univ, Dept Earth Resources & Environm Engn, Seoul 04763, South Korea
关键词
Asphaltene; Nano-confinement; CO2; huff-n-puff; Permeability reduction; Wettability alteration; Shale reservoir; CARBON-DIOXIDE STORAGE; CAPILLARY-PRESSURE; PRECIPITATION; INJECTION; RECOVERY; DEPOSITION; SIMULATION; GAS; EOR; MECHANISMS;
D O I
10.1016/j.petrol.2019.106304
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, the behavior of asphaltene formation and nano-confinement during the CO2 huff-n-puff process in liquid-rich shale reservoirs is investigated. Asphaltene precipitation and deposition in the pore volume of shale formation from mixing between oil and CO2 could cause formation damage, which reduces the permeability and/or changes the rock surface condition toward more oil-wet. In addition, the nano-confinement effect changes the phase behavior of the fluid affecting the asphaltene formation in tight shale formations. With the development of a reservoir simulation model that incorporates both asphaltene formation and the nano-confinement effect, this study quantifies the effects of asphaltene deposition and nano-confinement on shale oil production of CO2 huff-n-puff. While ignoring the permeability reduction and wettability alteration due to asphaltene deposition, the nano-confinement effect increases the shale oil production by up to 42% during the CO2 huff-n-puff process. However, the nano-confinement effect increases the asphaltene precipitation and deposition in nano-scaled tight formation. On incorporating the formation damage due to asphaltene deposition, more deposited asphaltene due to nano-confinement effect decreases the oil production by 4%. This study clarifies that the effects of asphaltene formation and nano-confinement should be taken into consideration for an accurate prediction of hydrocarbon production during CO2 huff-n-puff in tight shale formation.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Experimental Investigation of Asphaltene Deposition and Its Impact on Oil Recovery in Eagle Ford Shale during Miscible and Immiscible CO2 Huff-n-Puff Gas Injection
    Elturki, Mukhtar
    Imqam, Abdulmohsin
    ENERGY & FUELS, 2023, 37 (04) : 2993 - 3010
  • [22] Experimental investigation of CO2 huff-n-puff process for enhancing oil recovery in tight reservoirs
    Pu, Wanfen
    Wei, Bing
    Jin, Fayang
    Li, Yibo
    Jia, Hu
    Liu, Penggang
    Tang, Zhijuan
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2016, 111 : 269 - 276
  • [23] Performance of CO2 Foam Huff and Puff in Tight Oil Reservoirs
    Shabib-Asl, Abdolmohsen
    Chen, Shengnan
    Zheng, Sixu
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [24] Optimization Strategy to Reduce Asphaltene Deposition-Associated Damage During CO2 Huff-n-Puff Injection in Shale
    Shen, Ziqi
    Sheng, James J.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (06) : 6179 - 6193
  • [25] Three-dimensional physical experimental study on mechanisms and influencing factors of CO2 huff-n-puff and flooding process in shale reservoirs after fracturing
    Song, Yuyuan
    Yao, Chuanjin
    Zhang, Xiuqing
    Zhao, Jia
    Chen, Nan
    Hou, Jingxuan
    Yang, Huichao
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 243
  • [26] Optimization of CO2 Huff-n-Puff in Unconventional Reservoirs with a Focus on Pore Confinement Effects, Fluid Types, and Completion Parameters
    Khanal, Aaditya
    Shahriar, Md Fahim
    ENERGIES, 2023, 16 (05)
  • [27] Experimental study on CO2 Huff-n-Puff for enhanced shale oil recovery and microscopic mobilization characteristics using online NMR
    Huang, Yong
    Liu, Feng
    Kang, Yong
    Hu, Yi
    Li, Lian
    Liu, Yiwei
    FUEL, 2025, 387
  • [28] The Supercritical CO2 Huff-n-puff Experiment of Shale Oil Utilizing Isopropanol
    Shang, Shengxiang
    Dong, Mingzhe
    Gong, Houjian
    2017 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION (ESMA2017), VOLS 1-4, 2018, 108
  • [29] Further discussion of CO2 huff-n-puff mechanisms in tight oil reservoirs based on NMR monitored fluids spatial distributions
    Tang, Wei-Yu
    Sheng, James J.
    Jiang, Ting-Xue
    PETROLEUM SCIENCE, 2023, 20 (01) : 350 - 361
  • [30] Design of CO2 Huff-n-Puff Parameters for Fractured Tight Oil Reservoirs Considering Geomechanical Effects
    Xia, Yicun
    Xin, Xiankang
    Yu, Gaoming
    Wang, Yanxin
    Lei, Zexuan
    Zhang, Liyuan
    PROCESSES, 2024, 12 (12)