Max-plus convex sets and max-plus semispaces. I

被引:26
作者
Nitica, V. [1 ]
Singer, I. [1 ]
机构
[1] Inst Math, Bucharest, Romania
基金
美国国家科学基金会;
关键词
max-plus convex set; max-plus semispace; max-plus segment; max-plus semifield; separation;
D O I
10.1080/02331930600819852
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The max-plus semifield R-max is the set R boolean OR {-infinity} with the addition a circle plus b := max(a, b) and the multiplication a circle plus b := a + b. A subset C of R-max(n) is said to be max-plus convex if the relations x, y epsilon C,alpha, beta epsilon R-max, alpha circle plus beta = 0 (the unit element of circle times) imply (alpha circle times x) circle plus (beta circle times gamma) epsilon C, where circle plus is understood componentwise and alpha circle times x:= (alpha circle times x(1),..., alpha circle times x(n)) for alpha epsilon R-max, x = (x(1),..., x(n)) epsilon R-max(n). In analogy with the definition of semispaces for usual linear spaces (see e.g. Hammer ( Hammer, P.C., 1955, Maximal convex sets. Duke Mathematical Journal, 22, 103-106)), a max-plus semispace at a point z epsilon R-max(n) is a maximal (with respect to inclusion) max-plus convex subset of R-max(n)\{z}. In contrast to the case or linear spaces, where there exist all infinity of semispaces at each point, we show that in R-max(n) there exist at most n + 1 max-plus semispaces at each point, and exactly n + 1 at each point whose all coordinates are finite. We determine these max-plus semispaces and give some consequences for separation of max-plus convex sets from outside points. Some different separation theorems for closed max-plus convex sets were given ill (Cohen, G., Gaubert, S., Quadrat, J.-P. and Singer, I., 2005, Max-plus convex sets and functions. Contemporary Mathematics, 377, 105-129, circulated previously as Preprint 1341/2003, ESI, Vienna, and arXiv:math.FA/0308166).
引用
收藏
页码:171 / 205
页数:35
相关论文
共 10 条
[1]  
Baccelli F, 1992, SYNCHRONIZATION LINE
[2]  
BOURGIN DG, 1943, AM J MATH, V45, P637
[3]  
Cohen G, 2005, CONTEMP MATH, V377, P105
[4]   Duality and separation theorems in idempotent semimodules [J].
Cohen, G ;
Gaubert, S ;
Quadrat, JP .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 379 :395-422
[5]   MAXIMAL CONVEX SETS [J].
HAMMER, PC .
DUKE MATHEMATICAL JOURNAL, 1955, 22 (01) :103-106
[6]  
Klee V.L., 1956, MATH SCAND, V4, P54, DOI [DOI 10.7146/MATH.SCAND.A-10455, 10.7146/math.scand.a-10455]
[7]   Idempotent functional analysis: An algebraic approach [J].
Litvinov, GL ;
Maslov, VP ;
Shpiz, GB .
MATHEMATICAL NOTES, 2001, 69 (5-6) :696-729
[8]  
MAZUR S, 1933, STUD MATH, V4, P80
[9]  
MOTZKIN TS, 1951, MIMEOGRAPHED NOTES
[10]  
ZIMMERMANN K, 1977, EKON MAT OBZ, V13, P179