A reusable benchmark of brain-age prediction from M/EEG resting-state signals

被引:29
作者
Engemann, Denis A. [1 ,2 ,3 ]
Mellot, Apolline [2 ]
Hochenberger, Richard [2 ]
Banville, Hubert [2 ,4 ]
Sabbagh, David [2 ,5 ]
Gemein, Lukas [6 ,7 ]
Ball, Tonio [6 ,7 ,8 ]
Gramfort, Alexandre [2 ]
机构
[1] F Hoffmann Roche Ltd, Roche Innovat Ctr Basel, Roche Pharma Res & Early Dev Neurosci & Rare Dis, Basel, Switzerland
[2] Univ Saclay, INRIA, CEA, Palaiseau, France
[3] Max Planck Inst Human Cognit & Brain Sci, Dept Neurol, D-04103 Leipzig, Germany
[4] Univ Paris Diderot, INSERM, UMRS 942, Paris, France
[5] Univ Freiburg, Dept Neurosurg, Neuromed AI Lab, Med Ctr Univ Freiburg, Engelbergerstr 21, D-79106 Freiburg, Germany
[6] Univ Freiburg, Comp Sci Dept Univ Freiburg, Neurorobot Lab, Fac Engn, Georges Kohler Allee 80, D-79110 Freiburg, Germany
[7] Univ Freiburg, BrainLinks BrainTools Cluster Excellence, Freiburg, Germany
[8] InteraXon Inc, Toronto, ON, Canada
关键词
Clinical neuroscience; Brain age; Electroencephalography; Magnetoencephalography; Machine learning; Population modeling; Riemannian geometry; Random forests; Deep learning; HUMAN CONNECTOME PROJECT; TELOMERE LENGTH; LEARNING-MODELS; EEG; MEG; ELECTROENCEPHALOGRAM; SIGNATURES; DIAGNOSIS; EFFICIENT; AMPLITUDE;
D O I
10.1016/j.neuroimage.2022.119521
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Population-level modeling can define quantitative measures of individual aging by applying machine learning to large volumes of brain images. These measures of brain age, obtained from the general population, helped characterize disease severity in neurological populations, improving estimates of diagnosis or prognosis. Magnetoencephalography (MEG) and Electroencephalography (EEG) have the potential to further generalize this approach towards prevention and public health by enabling assessments of brain health at large scales in socio-economically diverse environments. However, more research is needed to define methods that can handle the complexity and diversity of M/EEG signals across diverse real-world contexts. To catalyse this effort, here we propose reusable benchmarks of competing machine learning approaches for brain age modeling. We benchmarked popular classical machine learning pipelines and deep learning architectures previously used for pathology decoding or brain age estimation in 4 international M/EEG cohorts from diverse countries and cultural contexts, including recordings from more than 2500 participants. Our benchmarks were built on top of the M/EEG adaptations of the BIDS standard, providing tools that can be applied with minimal modification on any M/EEG dataset provided in the BIDS format. Our results suggest that, regardless of whether classical machine learning or deep learning was used, the highest performance was reached by pipelines and architectures involving spatially aware representations of the M/EEG signals, leading to R-2 scores between 0.60-0.74. Hand-crafted features paired with random forest regression provided robust benchmarks even in situations in which other approaches failed. Taken together, this set of benchmarks, accompanied by open-source software and high-level Python scripts, can serve as a starting point and quantitative reference for future efforts at developing M/EEG-based measures of brain aging. The generality of the approach renders this benchmark reusable for other related objectives such as modeling specific cognitive variables or clinical endpoints.
引用
收藏
页数:17
相关论文
共 147 条
  • [1] Predicting Age From Brain EEG Signals-A Machine Learning Approach
    Al Zoubi, Obada
    Wong, Chung Ki
    Kuplicki, Rayus T.
    Yeh, Hung-wen
    Mayeli, Ahmad
    Refai, Hazem
    Paulus, Martin
    Bodurka, Jerzy
    [J]. FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
  • [2] An open resource for transdiagnostic research in pediatric mental health and learning disorders
    Alexander, Lindsay M.
    Escalera, Jasmine
    Ai, Lei
    Andreotti, Charissa
    Febre, Karina
    Mangone, Alexander
    Vega-Potler, Natan
    Langer, Nicolas
    Alexander, Alexis
    Kovacs, Meagan
    Litke, Shannon
    O'Hagan, Bridget
    Andersen, Jennifer
    Bronstein, Batya
    Bui, Anastasia
    Bushey, Marijayne
    Butler, Henry
    Castagna, Victoria
    Camacho, Nicolas
    Chan, Elisha
    Citera, Danielle
    Clucas, Jon
    Cohen, Samantha
    Dufek, Sarah
    Eaves, Megan
    Fradera, Brian
    Gardner, Judith
    Grant-Villegas, Natalie
    Green, Gabriella
    Gregory, Camille
    Hart, Emily
    Harris, Shana
    Horton, Megan
    Kahn, Danielle
    Kabotyanski, Katherine
    Karmel, Bernard
    Kelly, Simon P.
    Kleinman, Kayla
    Koo, Bonhwang
    Kramer, Eliza
    Lennon, Elizabeth
    Lord, Catherine
    Mantello, Ginny
    Margolis, Amy
    Merikangas, Kathleen R.
    Milham, Judith
    Minniti, Giuseppe
    Neuhaus, Rebecca
    Levine, Alexandra
    Osman, Yael
    [J]. SCIENTIFIC DATA, 2017, 4
  • [3] Prediction of brain age and cognitive age: Quantifying brain and cognitive maintenance in aging
    Anaturk, Melis
    Kaufmann, Tobias
    Cole, James H.
    Suri, Sana
    Griffanti, Ludovica
    Zsoldos, Eniko
    Filippini, Nicola
    Singh-Manoux, Archana
    Kivimaki, Mika
    Westlye, Lars T.
    Ebmeier, Klaus P.
    de Lange, Ann-Marie G.
    [J]. HUMAN BRAIN MAPPING, 2021, 42 (06) : 1626 - 1640
  • [4] Ang KK, 2008, IEEE IJCNN, P2390, DOI 10.1109/IJCNN.2008.4634130
  • [5] [Anonymous], GLOB BRAIN CONS HOM
  • [6] [Anonymous], 2005, MATH INTELL
  • [7] Appelhoff Stefan, 2019, J Open Source Softw, V4, DOI 10.21105/joss.01896
  • [8] Arnold J.B., 2021, GGTHEMES EXTRA THEME
  • [9] A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults
    Babayan, Anahit
    Erbey, Miray
    Kumral, Deniz
    Reinelt, Janis D.
    Reiter, Andrea M. F.
    Roebbig, Josefin
    Schaare, H. Lina
    Uhlig, Marie
    Anwander, Alfred
    Bazin, Pierre-Louis
    Horstmann, Annette
    Lampe, Leonie
    Nikulin, Vadim V.
    Okon-Singer, Hadas
    Preusser, Sven
    Pampel, Andre
    Rohr, Christiane S.
    Sacher, Julia
    Thoene-Otto, Angelika
    Trapp, Sabrina
    Nierhaus, Till
    Altmann, Denise
    Arelin, Katrin
    Bloechl, Maria
    Bongartz, Edith
    Breig, Patric
    Cesnaite, Elena
    Chen, Sufang
    Cozatl, Roberto
    Czerwonatis, Saskia
    Dambrauskaite, Gabriele
    Dreyer, Maria
    Enders, Jessica
    Engelhardt, Melina
    Fischer, Marie Michele
    Forschack, Norman
    Golchert, Johannes
    Golz, Laura
    Guran, C. Alexandrina
    Hedrich, Susanna
    Hentschel, Nicole
    Hoffmann, Daria I.
    Huntenburg, Julia M.
    Jost, Rebecca
    Kosatschek, Anna
    Kunzendorf, Stella
    Lammers, Hannah
    Lauckner, Mark E.
    Mahjoory, Keyvan
    Kanaan, Ahmad S.
    [J]. SCIENTIFIC DATA, 2019, 6 (1)
  • [10] Sources of cortical rhythms in adults during physiological aging: A multicentric EEG study
    Babiloni, C
    Binetti, G
    Cassarino, A
    Dal Forno, G
    Del Percio, C
    Ferreri, F
    Ferri, R
    Frisoni, G
    Galderisi, S
    Hirata, K
    Lanuzza, B
    Miniussi, C
    Mucci, A
    Nobili, F
    Rodriguez, G
    Romani, GL
    Rossini, PM
    [J]. HUMAN BRAIN MAPPING, 2006, 27 (02) : 162 - 172