Subdiagonal algebras with Beurling type invariant subspaces

被引:8
|
作者
Ji, Guoxing [1 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
von Neumann algebra; Subdiagonal algebra; Noncormnutative Hardy space; Beurling type invariant subspace; Reflexivity; POSITIVE CONES; FACTORIZATION; THEOREM; SPACES;
D O I
10.1016/j.jmaa.2019.123409
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let U be a maximal subdiagonal algebra in a sigma-finite von Neumann algebra M. If every right invariant subspace of U in the noncommutative Hardy space H-2 is of Beurling type, then we say U is of type 1. We determine generators of these algebras and consider a Riesz type factorization theorem for the noncommutative H-1 space. We show that the right analytic Toeplitz algebra on the noncommutative Hardy space H-P associated with a type 1 subdiagonal algebra with multiplicity 1 is hereditary reflexive. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条