On the relation of the square of white noise and the finite difference algebra

被引:16
作者
Accardi, L
Skeide, M
机构
[1] Univ Roma Tor Vergata, Ctr Vito Volterra, I-00133 Rome, Italy
[2] Brandenburg Tech Univ Cottbus, Lehrstuhl Wahrscheinlichkeitstheorie & Stat, D-03013 Cottbus, Germany
关键词
D O I
10.1142/S021902570000011X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The algebra of square of white noise(1) contains a subalgebra generated by elements fulfilling the relations of Feinsilver's finite difference algebra.(6) Moreover, Boukas' representation space(3) is the same as the representation space of the algebra of square of white noise discovered in Ref. 2. In other words, Boukas' representation extends to a representation of the algebra of square of white noise.
引用
收藏
页码:185 / 189
页数:5
相关论文
共 9 条
  • [1] ACCARDI L, IN PRESS MATH NOTES
  • [2] ACCARDI L, IN PRESS LECT NOT VO
  • [3] AN EXAMPLE OF A QUANTUM EXPONENTIAL PROCESS
    BOUKAS, A
    [J]. MONATSHEFTE FUR MATHEMATIK, 1991, 112 (03): : 209 - 215
  • [4] BOUKAS A, 1988, THESIS SO ILLINOIS U
  • [5] BOUKAS A, 1981, QUANTUM PROBABILITY, V6
  • [6] DISCRETE ANALOGS OF THE HEISENBERG-WEYL ALGEBRA
    FEINSILVER, P
    [J]. MONATSHEFTE FUR MATHEMATIK, 1987, 104 (02): : 89 - 108
  • [7] Parthasarathy K. R., 1972, Lecture Notes in Mathematics, V272
  • [8] Parthasarathy KR, 1991, QUANTUM PROBABILITY, VVI, P371
  • [9] SNIADY P, 1999, QUADRATIC BOSONIC FR