Crystal Structure and Physical Properties of the Lanthanum Chalcoantimonate TlLa2Sb3Se9

被引:1
|
作者
Menezes, Luke T. [1 ,2 ]
Richter-Bisson, Zoltan W. [1 ,2 ]
Assoud, Abdeljalil [1 ,2 ]
Kuropatwa, Bryan A. [1 ,2 ]
Kleinke, Holger [1 ,2 ]
机构
[1] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
来源
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE | 2021年 / 647卷 / 2-3期
基金
加拿大自然科学与工程研究理事会;
关键词
Thermoelectric; semiconductor; selenide; antimonate; crystal structure; electronic structure; ELECTRONIC-STRUCTURE; THERMOELECTRIC-MATERIALS; ANTIMONY SELENIDE;
D O I
10.1002/zaac.202000386
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The new lanthanum chalcoantimonate TlLa2Sb3Se9 has been synthesized and its crystal structure determined. TlLa2Sb3Se9 crystallizes in an ordered variant of the KLa2Sb3S9 type, space group P2(1)2(1)2(1) with the lattice parameters a=4.2621(2) angstrom, b=15.155(5) angstrom, c=25.505(9) angstrom. The band gap of TlLa2Sb3Se9 was calculated to be 0.47 eV, and experimentally determined to be 0.68 eV. Its thermoelectric properties were optimized via doping with Ca2+; samples with the compositions TlLa2-xCaxSb3Se9 (x=0.01, 0.03, 0.05) were synthesized. Despite ultralow thermal conductivity, the maximum thermoelectric figure-of-merit of the undoped sample was only zT=0.031 at 623 K, which was increased to 0.078 for the sample with the nominal composition of TlLa1.95Ca0.05Sb3Se9. These low values are a consequence of the uncompetitively low electrical conductivity.
引用
收藏
页码:81 / 85
页数:5
相关论文
共 50 条
  • [41] Ternary Chalcogenides GeSb2Se3 and Ge3Sb4Se7 Containing a 1∞[Sb2Se2]2- 1D Chain and a 2D Structure Related to SnSe
    Chen, Guan-Ruei
    Li, Chien-He
    Yu, Ching-Yi
    Wang, Ming-Fang
    Lee, Chi-Shen
    INORGANIC CHEMISTRY, 2020, 59 (16) : 11207 - 11212
  • [42] Effect of composition on optical properties of GeSe3-Sb2Se3-ZnSe thin films
    Balboul, M. R.
    Hosni, H. M.
    Soliman, M. A.
    Fayek, S. A.
    BULLETIN OF MATERIALS SCIENCE, 2014, 37 (06) : 1255 - 1263
  • [43] Vapor growth and optimization of supersaturation for tailoring the physical properties of stoichiometric Sb2Se3 crystalline habits
    Bibin, J.
    Kunjomana, A. G.
    Teena, M.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (19) : 15814 - 15833
  • [44] Theoretical studies on surface kinetics and growth properties of Sb2Se3 and Sb2S3
    Zhang, Xu-Jie
    Zhou, Jie
    Shu, Da-Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (38) : 20774 - 20785
  • [45] ThPt3+xBe (x=0.08): Crystal Structure and Physical Properties
    Gumeniuk, Roman
    Kohout, Miroslav
    Schnelle, Walter
    Burkhardt, Ulrich
    Zschornak, Matthias
    Leithe-Jasper, Andreas
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2017, (01) : 179 - 185
  • [46] Thermoelectric transport properties of p-type Bi2Se3-Sb2Se3-In2Se3 high entropy compounds
    Jiang, Feng
    Xia, Cheng-Liang
    Zhu, Yong-Bin
    Li, Jun
    Chen, Yue
    Liu, Wei-Shu
    RARE METALS, 2024, 43 (07) : 3415 - 3421
  • [47] A Review on the Fundamental Properties of Sb2Se3-Based Thin Film Solar Cells
    Bosio, Alessio
    Foti, Gianluca
    Pasini, Stefano
    Spoltore, Donato
    ENERGIES, 2023, 16 (19)
  • [48] Crystal structure and physical properties of new Ca2TGe3 (T = Pd and Pt) germanides
    Klimczuk, T.
    Xie, Weiwei
    Winiarski, M. J.
    Koziol, R.
    Litzbarski, L. S.
    Luo, Huixia
    Cava, R. J.
    JOURNAL OF SOLID STATE CHEMISTRY, 2016, 243 : 95 - 100
  • [49] Synthesis, Structure, and Optical Properties of Antiperovskite-Derived Ba2MQ3X (M = As, Sb; Q = S, Se; X = Cl, Br, I) Chalcohalides
    Wang, Ruiqi
    Zhang, Xian
    He, Jianqiao
    Bu, Kejun
    Zheng, Chong
    Lin, Jianhua
    Huang, Fuqiang
    INORGANIC CHEMISTRY, 2018, 57 (03) : 1449 - 1454
  • [50] Synthesis, structure and properties of layered iron-oxychalcogenides Nd2Fe2Se2-xSxO3
    Liu, Y.
    Zhang, S. B.
    Tan, S. G.
    Yuan, B.
    Kan, X. C.
    Zu, L.
    Sun, Y. P.
    JOURNAL OF SOLID STATE CHEMISTRY, 2015, 221 : 272 - 277