A sugar-template manufacturing method for microsystem ion-exchange membranes

被引:4
作者
Festarini, Rio V. [1 ]
Minh-Hao Pham [1 ]
Liu, Xinyue [1 ]
Barz, Dominik P. J. [1 ]
机构
[1] Queens Univ, Dept Chem Engn, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ion-exchange membrane; microfluidics; Nafion (TM); microfabrication; polydimethylsiloxane; SAMPLE PRECONCENTRATION; FUEL-CELL; MICROFABRICATION; DEVICE; NAFION;
D O I
10.1088/1361-6439/aa736b
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we report on a novel method for producing ion-exchange membranes that can be integrated directly into polydimethylsiloxane-based micro devices. Ionomers such as Nafion (TM), a copolymer with high conductivity and selectivity to small cations, are generally incompatible with common micro device materials due to the chemical inertness of the tetrafluoroethylene-based skeleton and the swelling in aqueous solutions. Hence, we introduce a microfabrication concept where we use consolidated sugar granules as a template to produce a porous polydimethylsiloxane scaffold. Ionomer and scaffold are combined to a composite membrane where the cohesion of these incompatible materials is of rather mechanical nature; i.e. the ionomer is physically entrapped in the scaffold. Electrochemical impedance spectroscopy measurements reveal the excellent membrane conductivity for the upper electrolyte concentrations tested in this work.
引用
收藏
页数:8
相关论文
共 19 条
[1]   Development of a polymeric micro fuel cell containing laser-micromachined flow channels [J].
Chan, SH ;
Nguyen, NT ;
Xia, ZT ;
Wu, ZG .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (01) :231-236
[2]   Enhanced sample preconcentration in microfluidic chip using graphene oxide-Nafion membrane [J].
Chang, Chun-Hao ;
Yang, Ruey-Jen .
MICROFLUIDICS AND NANOFLUIDICS, 2016, 20 (12)
[3]   Manufacturing methods and applications of membranes in microfluidics [J].
Chen, Xueye ;
Shen, Jienan ;
Hu, Zengliang ;
Huo, Xuyao .
BIOMEDICAL MICRODEVICES, 2016, 18 (06)
[4]   Fabrication of nanoporous junctions using off-the-shelf Nafion membrane [J].
Dinh-Tuan Phan ;
Yang, Chun ;
Nam-Trung Nguyen .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2015, 25 (11)
[5]   Hybrid polymer electrolyte membrane for silicon-based micro fuel cells integration [J].
Esquivel, J. P. ;
Sabate, N. ;
Tarancon, A. ;
Torres-Herrero, N. ;
Davila, D. ;
Santander, J. ;
Gracia, I. ;
Cane, C. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (06)
[6]   Microfabrication of human organs-on-chips [J].
Huh, Dongeun ;
Kim, Hyun Jung ;
Fraser, Jacob P. ;
Shea, Daniel E. ;
Khan, Mohammed ;
Bahinski, Anthony ;
Hamilton, Geraldine A. ;
Ingber, Donald E. .
NATURE PROTOCOLS, 2013, 8 (11) :2135-2157
[7]   A planar polymer microfluidic electrocapture device for bead immobilization [J].
Jonsson, Mats ;
Lindberg, Ulf .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (10) :2116-2120
[8]   Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications [J].
Kim, Sung Jae ;
Han, Jongyoon .
ANALYTICAL CHEMISTRY, 2008, 80 (09) :3507-3511
[9]   Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane [J].
Lee, Jeong Hoon ;
Song, Yong-Ak ;
Han, Jongyoon .
LAB ON A CHIP, 2008, 8 (04) :596-601
[10]   Ion transport in Nafion(R) 117 membrane [J].
Lehmani, A ;
Turq, P ;
Perie, M ;
Perie, J ;
Simonin, JP .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1997, 428 (1-2) :81-89