A sugar-template manufacturing method for microsystem ion-exchange membranes

被引:4
作者
Festarini, Rio V. [1 ]
Minh-Hao Pham [1 ]
Liu, Xinyue [1 ]
Barz, Dominik P. J. [1 ]
机构
[1] Queens Univ, Dept Chem Engn, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ion-exchange membrane; microfluidics; Nafion (TM); microfabrication; polydimethylsiloxane; SAMPLE PRECONCENTRATION; FUEL-CELL; MICROFABRICATION; DEVICE; NAFION;
D O I
10.1088/1361-6439/aa736b
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we report on a novel method for producing ion-exchange membranes that can be integrated directly into polydimethylsiloxane-based micro devices. Ionomers such as Nafion (TM), a copolymer with high conductivity and selectivity to small cations, are generally incompatible with common micro device materials due to the chemical inertness of the tetrafluoroethylene-based skeleton and the swelling in aqueous solutions. Hence, we introduce a microfabrication concept where we use consolidated sugar granules as a template to produce a porous polydimethylsiloxane scaffold. Ionomer and scaffold are combined to a composite membrane where the cohesion of these incompatible materials is of rather mechanical nature; i.e. the ionomer is physically entrapped in the scaffold. Electrochemical impedance spectroscopy measurements reveal the excellent membrane conductivity for the upper electrolyte concentrations tested in this work.
引用
收藏
页数:8
相关论文
共 19 条
  • [1] Development of a polymeric micro fuel cell containing laser-micromachined flow channels
    Chan, SH
    Nguyen, NT
    Xia, ZT
    Wu, ZG
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (01) : 231 - 236
  • [2] Enhanced sample preconcentration in microfluidic chip using graphene oxide-Nafion membrane
    Chang, Chun-Hao
    Yang, Ruey-Jen
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2016, 20 (12)
  • [3] Manufacturing methods and applications of membranes in microfluidics
    Chen, Xueye
    Shen, Jienan
    Hu, Zengliang
    Huo, Xuyao
    [J]. BIOMEDICAL MICRODEVICES, 2016, 18 (06)
  • [4] Fabrication of nanoporous junctions using off-the-shelf Nafion membrane
    Dinh-Tuan Phan
    Yang, Chun
    Nam-Trung Nguyen
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2015, 25 (11)
  • [5] Hybrid polymer electrolyte membrane for silicon-based micro fuel cells integration
    Esquivel, J. P.
    Sabate, N.
    Tarancon, A.
    Torres-Herrero, N.
    Davila, D.
    Santander, J.
    Gracia, I.
    Cane, C.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (06)
  • [6] Microfabrication of human organs-on-chips
    Huh, Dongeun
    Kim, Hyun Jung
    Fraser, Jacob P.
    Shea, Daniel E.
    Khan, Mohammed
    Bahinski, Anthony
    Hamilton, Geraldine A.
    Ingber, Donald E.
    [J]. NATURE PROTOCOLS, 2013, 8 (11) : 2135 - 2157
  • [7] A planar polymer microfluidic electrocapture device for bead immobilization
    Jonsson, Mats
    Lindberg, Ulf
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (10) : 2116 - 2120
  • [8] Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications
    Kim, Sung Jae
    Han, Jongyoon
    [J]. ANALYTICAL CHEMISTRY, 2008, 80 (09) : 3507 - 3511
  • [9] Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane
    Lee, Jeong Hoon
    Song, Yong-Ak
    Han, Jongyoon
    [J]. LAB ON A CHIP, 2008, 8 (04) : 596 - 601
  • [10] Ion transport in Nafion(R) 117 membrane
    Lehmani, A
    Turq, P
    Perie, M
    Perie, J
    Simonin, JP
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1997, 428 (1-2): : 81 - 89