Performance Analysis of Printed Circuit Heat Exchanger for Supercritical Carbon Dioxide

被引:58
|
作者
Guo, Jiangfeng [1 ,2 ]
Huai, Xiulan [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
printed circuit heat exchanger (PCHE); supercritical carbon dioxide (S-CO2); recuperator; entropy generation; axial conduction effect; heat transfer; OPTIMIZATION DESIGN; CYCLE; REACTOR;
D O I
10.1115/1.4035603
中图分类号
O414.1 [热力学];
学科分类号
摘要
A printed circuit heat exchanger (PCHE) was selected as the recuperator of supercritical carbon dioxide (S-CO2) Brayton cycle, and the segmental design method was employed to accommodate the rapid variations of properties of S-CO2. The local heat capacity rate ratio has crucial influences on the local thermal performance of PCHE, while having small influences on the frictional entropy generation. The heat transfer entropy generation is far larger than the frictional entropy generation, and the total entropy generation mainly depends on the heat transfer entropy generation. The axial conduction worsens the thermal performance of PCHE, which becomes more and more obvious with the increase of the thickness and thermal conductivity of plate. The evaluation criteria, material, and size of plate have to be selected carefully in the design of PCHE. The present work may provide a practical guidance on the design and optimization of PCHE when S-CO2 is employed as working fluid.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide
    Zhang Y.
    Liu F.
    Zhang S.
    Du W.
    Huagong Xuebao/CIESC Journal, 2023, 74 : 183 - 190
  • [2] HEAT TRANSFER OF SUPERCRITICAL CARBON DIOXIDE IN PRINTED CIRCUIT HEAT EXCHANGER GEOMETRIES
    Kruizenga, Alan
    Anderson, Mark
    Fatima, Roma
    Corradini, Michael
    Towne, Aaron
    Ranjan, Devesh
    PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 4: HEAT TRANSFER MEASUREMENT TECHNIQUES, HEAT TRANSFER EQUIPMENT, THERMOELECTRICS, 2010, : 653 - 661
  • [3] Experimental exergy analysis of a printed circuit heat exchanger for supercritical carbon dioxide Brayton cycles
    Cheng, Keyong
    Zhou, Jingzhi
    Huai, Xiulan
    Guo, Jiangfeng
    APPLIED THERMAL ENGINEERING, 2021, 192 (192)
  • [4] A new evaluation method for overall heat transfer performance of supercritical carbon dioxide in a printed circuit heat exchanger
    Li, Xiong-hui
    Deng, Tian-rui
    Ma, Ting
    Ke, Han-bing
    Wang, Qiu-wang
    ENERGY CONVERSION AND MANAGEMENT, 2019, 193 : 99 - 105
  • [5] Heat Transfer Characteristics of Printed Circuit Heat Exchanger with Supercritical Carbon Dioxide and Molten Salt
    Lao Jiewei
    Fu Qianmei
    Wang Weilong
    Ding Jing
    Lu Jianfeng
    JOURNAL OF THERMAL SCIENCE, 2021, 30 (03) : 880 - 891
  • [6] Heat Transfer Characteristics of Printed Circuit Heat Exchanger with Supercritical Carbon Dioxide and Molten Salt
    LAO Jiewei
    FU Qianmei
    WANG Weilong
    DING Jing
    LU Jianfeng
    Journal of Thermal Science, 2021, 30 (03) : 880 - 891
  • [7] Heat Transfer Characteristics of Printed Circuit Heat Exchanger with Supercritical Carbon Dioxide and Molten Salt
    Jiewei Lao
    Qianmei Fu
    Weilong Wang
    Jing Ding
    Jianfeng Lu
    Journal of Thermal Science, 2021, 30 : 880 - 891
  • [8] Effect of printed circuit heat exchanger's different designs on the performance of supercritical carbon dioxide Brayton cycle
    Saeed, Muhammed
    Berrouk, Abdallah S.
    Siddiqui, M. Salman
    Awais, Ahmad Ali
    APPLIED THERMAL ENGINEERING, 2020, 179
  • [9] Thermal and mechanical performance of a hybrid printed circuit heat exchanger used for supercritical carbon dioxide Brayton cycle
    Lian, Jie
    Xu, Dongjun
    Chang, Hongliang
    Xu, Zirui
    Lu, Xing
    Wang, Qiuwang
    Ma, Ting
    ENERGY CONVERSION AND MANAGEMENT, 2021, 245
  • [10] Design and Performance Analysis of a Supercritical Carbon Dioxide Heat Exchanger
    Seo, Han
    Cha, Jae Eun
    Kim, Jaemin
    Sah, Injin
    Kim, Yong-Wan
    APPLIED SCIENCES-BASEL, 2020, 10 (13):