Trace Representation of the Sequences Derived from Polynomial Quotient

被引:2
作者
Zhao, Liping [1 ]
Du, Xiaoni [1 ]
Wu, Chenhuang [2 ]
机构
[1] Northwest Normal Univ, Lanzhou 730070, Gansu, Peoples R China
[2] Putian Univ, Putian 351100, Fujian, Peoples R China
来源
CLOUD COMPUTING AND SECURITY, PT IV | 2018年 / 11066卷
基金
中国国家自然科学基金;
关键词
Polynomial quotient; Trace representation; Fourier transform; Defining pairs; Binary sequence; LINEAR COMPLEXITY; CHARACTER SUMS;
D O I
10.1007/978-3-030-00015-8_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The discrete Fourier transform and trace representation of certain sequences can help generate the sequences efficiently and analyse their cryptographic properties. In this paper, we first determine the defining pairs of the binary sequences derived from a class of polynomial quotient modulo an odd prime p and the Legendre symbol. We then derive the discrete Fourier transform and the trace representation of this class of sequences.
引用
收藏
页码:26 / 37
页数:12
相关论文
共 16 条
  • [1] TRANSFORM TECHNIQUES FOR ERROR CONTROL CODES
    BLAHUT, RE
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1979, 23 (03) : 299 - 315
  • [2] Chen Z, ARXIV170501380
  • [3] Chen Z., 2014, Sci. China Inf. Sci., V57, P1
  • [4] Additive character sums of polynomial quotients
    Chen, Zhixiong
    Winterhof, Arne
    [J]. THEORY AND APPLICATIONS OF FINITE FIELDS, 2012, 579 : 67 - +
  • [5] On the linear complexity of binary threshold sequences derived from Fermat quotients
    Chen, Zhixiong
    Du, Xiaoni
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2013, 67 (03) : 317 - 323
  • [6] Cusick TW, 1998, N HOLLAND MATH LIB, V55
  • [7] Trace Representation and Linear Complexity of Binary eth Power Residue Sequences of Period p
    Dai, Zongduo
    Gong, Guang
    Song, Hong-Yeop
    Ye, Dingfeng
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (03) : 1530 - 1547
  • [8] A trace representation of binary Jacobi sequences
    Dai, Zongduo
    Gong, Guang
    Song, Hong-Yeop
    [J]. DISCRETE MATHEMATICS, 2009, 309 (06) : 1517 - 1527
  • [9] On the p-divisibility of Fermat quotients
    Ernvall, R
    Metsankyla, T
    [J]. MATHEMATICS OF COMPUTATION, 1997, 66 (219) : 1353 - 1365
  • [10] Golomb S.W., 1967, Shift Register Sequences