An unsupervised neural network approach for imputation of missing values in univariate time series data

被引:7
|
作者
Savarimuthu, Nickolas [1 ]
Karesiddaiah, Shobha [1 ]
机构
[1] Natl Inst Technol, Dept Comp Applicat, Tiruchirappalli, India
来源
关键词
imputation; time series; univariate; unsupervised;
D O I
10.1002/cpe.6156
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Handling missing values in time series data plays a key role in predicting and forecasting, as complete and clean historical data help to achieve higher accuracy. Numerous research works are present in multivariate time series imputation, but imputation in univariate time series data is least considered due to correlated variables unavailability. This article aims to propose an iterative imputation algorithm by clustering univariate time series data, considering the trend, seasonality, cyclical, and residue features of the data. The proposed method uses a similarity based nearest neighbor imputation approach on each clusters for filling missing values. The proposed method is evaluated on publicly available data set from the data market repository and UCI repository by randomly simulating missing patterns under low, moderate, and high missingness rates throughout the data series. The proposed method's outcome is evaluated with the imputeTestbench package with root mean squared error as an error metric and validated through prediction accuracy and concordance correlation coefficient statistical test. Experimental results show that the proposed imputation technique produces closer values to the original time series data set, resulting in low error rates compared with other existing imputation methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A First Approach on Big Data Missing Values Imputation
    Montesdeoca, Besay
    Luengo, Julian
    Maillo, Jesus
    Garcia-Gil, Diego
    Garcia, Salvador
    Herrera, Francisco
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS 2019), 2019, : 315 - 323
  • [22] Selective Imputation for Multivariate Time Series Datasets With Missing Values
    Blazquez-Garcia, Anehd
    Wickstrom, Kristoffer
    Yu, Shujian
    Mikalsen, Karl Oyvind
    Boubekki, Ahcene
    Conde, Angel
    Mori, Usue
    Jenssen, Robert
    Lozano, Jose A.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (09) : 9490 - 9501
  • [23] Effects of missing data imputation methods on univariate blood pressure time series data analysis and forecasting with ARIMA and LSTM
    Niako, Nicholas
    Melgarejo, Jesus D.
    Maestre, Gladys E.
    Vatcheva, Kristina P.
    BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [24] Method of missing data imputation for multivariate time series
    Li Z.
    Zhang F.
    Wang Y.
    Tao Q.
    Li C.
    2018, Chinese Institute of Electronics (40): : 225 - 230
  • [25] Missing Data Imputation in Time Series of Air Pollution
    Junger, Washington
    de Leon, Antonio Ponce
    EPIDEMIOLOGY, 2009, 20 (06) : S87 - S87
  • [26] Imputation of missing data in time series for air pollutants
    Junger, W. L.
    de Leon, A. Ponce
    ATMOSPHERIC ENVIRONMENT, 2015, 102 : 96 - 104
  • [27] Missing Data Imputation in Time Series by Evolutionary Algorithms
    Figueroa Garcia, Juan C.
    Kalenatic, Dusko
    Lopez Bello, Cesar Amilcar
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2008, 5227 : 275 - +
  • [28] Dynamic time warping-based imputation for univariate time series data
    Thi-Thu-Hong Phan
    Caillault, Emilie Poisson
    Lefebvre, Alain
    Bigand, Andre
    PATTERN RECOGNITION LETTERS, 2020, 139 : 139 - 147
  • [29] Imputation of Missing Value Using Dynamic Bayesian Network for Multivariate Time Series Data
    Susanti, Steffi Pauli
    Azizah, Fazat Nur
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON DATA AND SOFTWARE ENGINEERING (ICODSE), 2017,
  • [30] Trend Tests in Time Series with Missing Values: a Case Study with Imputation
    Rosario Ramos, M.
    Cordeiro, Clara
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1909 - 1912