Hexagonal WO3 Nanorods as Ambipolar Electrode Material in Asymmetric WO3//WO3/MnO2 Supercapacitor

被引:26
作者
Sarkar, Debasish [1 ]
Mukherjee, Soham [1 ]
Pal, Somnath [1 ]
Sarma, D. D. [1 ]
Shukla, Ashok [1 ]
机构
[1] Indian Inst Sci, Solid State & Struct Chem Unit, Bengaluru 560012, India
关键词
ELECTROCHEMICAL ENERGY-STORAGE; TUNGSTEN-OXIDE NANOWIRES; HIGH-PERFORMANCE; ANODE; CAPACITORS; SUBSTRATE; CATHODE; CLOTH;
D O I
10.1149/2.0451810jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Unique efficacy of hexagonal WO3 (h-WO3) nanorods (NRs) both as anode and cathode materials realized via a core-shell design for constructing an asymmetric supercapacitor (ASC) with compelling performances is demonstrated. The WO3/MnO2 core-shell NR cathode designed by combining ultra-thin MnO2 nano-flake shell with h-WO3 NR core shows ameliorated electrochemical performance in terms of areal capacitance and rate capability in relation to pristine MnO2 electrodes. The study also elucidates the high charge storage capacity of h-WO3 NRs anode with contributions arising both from redox pseudocapacitance and intercalation capacitance due to proton intercalation/deintercalation inside the intracrystalline tunnels in h-WO3. Accordingly, the WO3//WO3/MnO2 ASC exhibits stable capacitance within a potential window of 1.8 V in an aqueous electrolyte with a volumetric capacitance of 7.22 F/cm(3) and an energy density of 3.25 mWh/cm(3), characterizing it as one of the state-of-the-art ASCs in the present scenario. The use of versatile h-WO3 NRs in designing both the negative and positive electrodes could be critical in realizing next-generation high-performance supercapacitors. (C) 2018 The Electrochemical Society.
引用
收藏
页码:A2108 / A2114
页数:7
相关论文
共 33 条
[1]   Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder [J].
Baek, Yunho ;
Yong, Kijung .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (03) :1213-1218
[2]   Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting [J].
Balogun, Muhammad-Sadeeq ;
Huang, Yongchao ;
Qiu, Weitao ;
Yang, Hao ;
Ji, Hongbing ;
Tong, Yexiang .
MATERIALS TODAY, 2017, 20 (08) :425-451
[3]   Hierarchical Nanostructured WO3 with Biomimetic Proton Channels and Mixed Ionic-Electronic Conductivity for Electrochemical Energy Storage [J].
Chen, Zheng ;
Peng, Yiting ;
Liu, Fang ;
Le, Zaiyuan ;
Zhu, Jian ;
Shen, Gurong ;
Zhang, Dieqing ;
Wen, Meicheng ;
Xiao, Shuning ;
Liu, Chi-Ping ;
Lu, Yunfeng ;
Li, Hexing .
NANO LETTERS, 2015, 15 (10) :6802-6808
[4]   Structure and electrical properties of tungsten oxide nanorods epitaxially organized on a mica substrate [J].
Delamare, R. ;
Gillet, M. ;
Gillet, E. ;
Guaino, P. .
SURFACE SCIENCE, 2007, 601 (13) :2675-2679
[5]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[6]   High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes [J].
Gao, Lina ;
Wang, Xianfu ;
Xie, Zhong ;
Song, Weifeng ;
Wang, Lijing ;
Wu, Xiang ;
Qu, Fengyu ;
Chen, Di ;
Shen, Guozhen .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (24) :7167-7173
[7]   High Performance All-Solid-State Flexible Micro-Pseudocapacitor Based on Hierarchically Nanostructured Tungsten Trioxide Composite [J].
Huang, Xuezhen ;
Liu, Hewei ;
Zhang, Xi ;
Jiang, Hongrui .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (50) :27845-27852
[8]  
Kai H., 2008, J PHYS D, V41
[9]   High Energy Density Asymmetric Quasi-Solid-State Supercapacitor Based on Porous Vanadium Nitride Nanowire Anode [J].
Lu, Xihong ;
Yu, Minghao ;
Zhai, Teng ;
Wang, Gongming ;
Xie, Shilei ;
Liu, Tianyu ;
Liang, Chaolun ;
Tong, Yexiang ;
Li, Yat .
NANO LETTERS, 2013, 13 (06) :2628-2633
[10]   WO3-x@Au@MnO2 Core-Shell Nanowires on Carbon Fabric for High-Performance Flexible Supercapacitors [J].
Lu, Xihong ;
Zhai, Teng ;
Zhang, Xianghui ;
Shen, Yongqi ;
Yuan, Longyan ;
Hu, Bin ;
Gong, Li ;
Chen, Jian ;
Gao, Yihua ;
Zhou, Jun ;
Tong, Yexiang ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2012, 24 (07) :938-+