Well-balanced high-order finite difference methods for systems of balance laws

被引:15
|
作者
Pares, Carlos [1 ]
Pares-Pulido, Carlos [2 ]
机构
[1] Univ Malaga, Malaga, Spain
[2] Swiss Fed Inst Technol, Zurich, Switzerland
关键词
Systems of balance laws; High-order methods; Well-balanced methods; Finite difference methods; Weighted essentially non-oscillatory methods; Shallow Water model; DISCONTINUOUS GALERKIN METHODS; SHALLOW-WATER EQUATIONS; VOLUME WENO SCHEMES; EULER EQUATIONS; HYDROSTATIC RECONSTRUCTION; EFFICIENT IMPLEMENTATION; HYPERBOLIC SYSTEMS; NUMERICAL SCHEMES; GAS-DYNAMICS; 2ND-ORDER;
D O I
10.1016/j.jcp.2020.109880
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, high order well-balanced finite difference weighted essentially non-oscillatory methods to solve general systems of balance laws are presented. Two different families are introduced: while the methods in the first one preserve every stationary solution, those in the second family only preserve a given set of stationary solutions that depend on some parameters. The accuracy, well-balancedness, and conservation properties of the methods are discussed, as well as their application to systems with singular source terms. The strategy is applied to derive third and fifth order well-balanced methods for a linear scalar balance law, Burgers' equation with a nonlinear source term, and for the shallow water model. In particular, numerical methods that preserve every stationary solution or only water at rest equilibria are derived for the latter. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Well-Balanced High-Order Finite Volume Methods for Systems of Balance Laws
    Castro, Manuel J.
    Pares, Carlos
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (02)
  • [2] Well-Balanced High-Order Discontinuous Galerkin Methods for Systems of Balance Laws
    Guerrero Fernandez, Ernesto
    Escalante, Cipriano
    Castro Diaz, Manuel J.
    MATHEMATICS, 2022, 10 (01)
  • [3] Collocation Methods for High-Order Well-Balanced Methods for Systems of Balance Laws
    Gomez-Bueno, Irene
    Castro Diaz, Manuel Jesus
    Pares, Carlos
    Russo, Giovanni
    MATHEMATICS, 2021, 9 (15)
  • [4] Well-Balanced High-Order Finite Volume Methods for Systems of Balance Laws
    Manuel J. Castro
    Carlos Parés
    Journal of Scientific Computing, 2020, 82
  • [5] High-order well-balanced methods for systems of balance laws: a control-based approach
    Gomez-Bueno, Irene
    Castro, Manuel J.
    Pares, Carlos
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 394
  • [6] Implicit and semi-implicit well-balanced finite-volume methods for systems of balance laws
    Gomez-Bueno, I
    Boscarino, S.
    Castro, M. J.
    Pares, C.
    Russo, G.
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 18 - 48
  • [7] A well-balanced conservative high-order alternative finite difference WENO (A-WENO) method for the shallow water equations
    Xu, Ziyao
    Shu, Chi-Wang
    ADVANCES IN WATER RESOURCES, 2025, 196
  • [8] High order well-balanced finite volume methods for multi-dimensional systems of hyperbolic balance laws
    Berberich, Jonas P.
    Chandrashekar, Praveen
    Klingenberg, Christian
    COMPUTERS & FLUIDS, 2021, 219
  • [9] Implicit and semi-implicit well-balanced finite-volume methods for systems of balance laws
    Gomez-Bueno, I.
    Boscarino, S.
    Castro, M. J.
    Pares, C.
    Russo, G.
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 18 - 48
  • [10] Well-balanced positivity-preserving high-order discontinuous Galerkin methods for Euler equations with gravitation
    Du, Jie
    Yang, Yang
    Zhu, Fangyao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 505