CONSTRAINT INTERFACE PRECONDITIONING FOR TOPOLOGY OPTIMIZATION PROBLEMS

被引:4
作者
Kocvara, M. [1 ,2 ]
Loghin, D. [1 ]
Turner, J. [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Acad Sci Czech Republ, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, CR-18208 Prague 8, Czech Republic
关键词
topology optimization; domain decomposition; Newton-Krylov; preconditioning; interior point; KRYLOV-SCHUR METHODS; INTERIOR METHODS; DESIGN; NORMS;
D O I
10.1137/140980387
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The discretization of constrained nonlinear optimization problems arising in the field of topology optimization yields algebraic systems which are challenging to solve in practice, due to pathological ill-conditioning, strong nonlinearity, and size. In this work we propose a methodology which brings together existing fast algorithms, namely, interior point for the optimization problem and a novel substructuring domain decomposition method for the ensuing large-scale linear systems. The main contribution is the choice of interface preconditioner which allows for the acceleration of the domain decomposition method, leading to performance independent of problem size.
引用
收藏
页码:A128 / A145
页数:18
相关论文
共 34 条
[1]   Discrete fractional Sobolev norms for domain decomposition preconditioning [J].
Arioli, Mario ;
Kourounis, Drosos ;
Loghin, Daniel .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) :318-342
[2]   DISCRETE INTERPOLATION NORMS WITH APPLICATIONS [J].
Arioli, Mario ;
Loghin, Daniel .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) :2924-2951
[3]   Free material design via semidefinite programming: The multiload case with contact conditions [J].
Ben-Tal, A ;
Kocvara, M ;
Nemirovski, A ;
Zowe, J .
SIAM REVIEW, 2000, 42 (04) :695-715
[4]  
Bendse MP., 2003, Topology optimization: theory, methods, and applications, V2
[5]   Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part I: The Krylov-Schur solver [J].
Biros, G ;
Ghattas, O .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02) :687-713
[6]   Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part II: The Lagrange-Newton solver and its application to optimal control of steady viscous flows [J].
Biros, G ;
Ghattas, O .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02) :714-739
[7]   Large-scale topology optimization in 3D using parallel computing [J].
Borrvall, T ;
Petersson, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (46-47) :6201-6229
[8]   An interior point algorithm for large-scale nonlinear programming [J].
Byrd, RH ;
Hribar, ME ;
Nocedal, J .
SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (04) :877-900
[9]   Solving three-dimensional layout optimization problems using fixed scale wavelets [J].
DeRose, GCA ;
Díaz, AR .
COMPUTATIONAL MECHANICS, 2000, 25 (2-3) :274-285
[10]   On the formulation and theory of the Newton interior-point method for nonlinear programming [J].
ElBakry, AS ;
Tapia, RA ;
Tsuchiya, T ;
Zhang, Y .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 89 (03) :507-541