共 50 条
Improving prediction and assessment of global fires using multilayer neural networks
被引:24
|作者:
Joshi, Jaideep
[1
,2
]
Sukumar, Raman
[1
,2
]
机构:
[1] Indian Inst Sci, Ctr Ecol Sci, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India
关键词:
EARTH SYSTEM;
CLIMATE;
VEGETATION;
EMISSIONS;
MODEL;
FOREST;
FUTURE;
CARBON;
WILDFIRE;
DRIVEN;
D O I:
10.1038/s41598-021-81233-4
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Fires determine vegetation patterns, impact human societies, and are a part of complex feedbacks into the global climate system. Empirical and process-based models differ in their scale and mechanistic assumptions, giving divergent predictions of fire drivers and extent. Although humans have historically used and managed fires, the current role of anthropogenic drivers of fires remains less quantified. Whereas patterns in fire-climate interactions are consistent across the globe, fire-human-vegetation relationships vary strongly by region. Taking a data-driven approach, we use an artificial neural network to learn region-specific relationships between fire and its socio-environmental drivers across the globe. As a result, our models achieve higher predictability as compared to many state-of-the-art fire models, with global spatial correlation of 0.92, monthly temporal correlation of 0.76, interannual correlation of 0.69, and grid-cell level correlation of 0.60, between predicted and observed burned area. Given the current socio-anthropogenic conditions, Equatorial Asia, southern Africa, and Australia show a strong sensitivity of burned area to temperature whereas northern Africa shows a strong negative sensitivity. Overall, forests and shrublands show a stronger sensitivity of burned area to temperature compared to savannas, potentially weakening their status as carbon sinks under future climate-change scenarios.
引用
收藏
页数:14
相关论文