Model Based Modified K-Means Clustering for Microarray Data

被引:6
|
作者
Suresh, R. M. [1 ]
Dinakaran, K. [1 ]
Valarmathie, P. [2 ]
机构
[1] RMK Engn Coll, Dept Comp Sci & Engn, Madras, Tamil Nadu, India
[2] MGR Univ, Dept Comp Sci & Engn, Madras, Tamil Nadu, India
来源
2009 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT AND ENGINEERING, PROCEEDINGS | 2009年
关键词
Microarray techniques; k-means clustering; sum of squares; Gene expression data;
D O I
10.1109/ICIME.2009.53
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large amount of gene expression data obtained from Microarray technologies should be analyzed and interpreted in appropriate manner for the benefit of researchers. Using microarray techniques one can monitor the expressions levels of thousands of genes simultaneously. One challenging problem in gene expression analysis is to define the number of clusters. This can be done by some efficient clustering techniques; the Model Based Modified k-means method introduced in this paper could find the exact number of clusters and overcome the problems in the existing k-means clustering technique. Our experimental results show the efficiency of our method by calculating and comparing the sum of squares with different k values.
引用
收藏
页码:271 / 273
页数:3
相关论文
共 50 条
  • [31] Email Forensic Analysis Based on k-means clustering
    Nampoothiri, Arya P.
    Madhavu, Minu Lalitha
    2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2015, : 814 - 817
  • [32] Weighted k-Means Algorithm Based Text Clustering
    Chen, Xiuguo
    Yin, Wensheng
    Tu, Pinghui
    Zhang, Hengxi
    IEEC 2009: FIRST INTERNATIONAL SYMPOSIUM ON INFORMATION ENGINEERING AND ELECTRONIC COMMERCE, PROCEEDINGS, 2009, : 51 - +
  • [33] Using K-Means Clustering and Data Visualization for Monetizing logistics Data
    Qabbaah, Hamzah
    Sammour, George
    Vanhoof, Koen
    2019 2ND INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), 2019, : 164 - 169
  • [34] Time series k-means: A new k-means type smooth subspace clustering for time series data
    Huang, Xiaohui
    Ye, Yunming
    Xiong, Liyan
    Lau, Raymond Y. K.
    Jiang, Nan
    Wang, Shaokai
    INFORMATION SCIENCES, 2016, 367 : 1 - 13
  • [35] NEW ALGORITHM FOR CLUSTERING DISTRIBUTED DATA USING K-MEANS
    Khedr, Ahmed M.
    Bhatnagar, Raj K.
    COMPUTING AND INFORMATICS, 2014, 33 (04) : 943 - 964
  • [36] Underdetermined BSS Based on K-means and AP Clustering
    He, Xuan-sen
    He, Fan
    Cai, Wei-hua
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2016, 35 (08) : 2881 - 2913
  • [37] Clustering Data in Power Management System Using k-Means Clustering Algorithm
    Aryani, Ressy
    Nasrun, Muhammad
    Setianingsih, Casi
    Murti, Muhammad Ary
    2019 IEEE ASIA PACIFIC CONFERENCE ON WIRELESS AND MOBILE (APWIMOB), 2019, : 164 - 170
  • [38] A Ranking Learning Model by K-Means Clustering Technique for Web Scraped Movie Data
    Sarker, Kamal Uddin
    Saqib, Mohammed
    Hasan, Raza
    Mahmood, Salman
    Hussain, Saqib
    Abbas, Ali
    Deraman, Aziz
    COMPUTERS, 2022, 11 (11)
  • [39] AN INITIALIZATION METHOD OF K-MEANS CLUSTERING ALGORITHM FOR MIXED DATA
    Li, Taoying
    Jin, Zhihong
    Chen, Yan
    Ebonzo, Angelo Dan Menga
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2014, 10 (05): : 1873 - 1883
  • [40] PCA-guided k-Means Clustering With Incomplete Data
    Honda, Katsuhiro
    Nonoguchi, Ryoichi
    Notsu, Akira
    Ichihashi, Hidetomo
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 1710 - 1714