Congruences modulo 16, 32, and 64 for Andrews's singular overpartitions

被引:21
|
作者
Yao, Olivia X. M. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Singular overpartitions; Arithmetic properties; Theta functions; ANALOGS;
D O I
10.1007/s11139-015-9760-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent work, Andrews gave a definition of combinatorial objects which he called singular overpartitions and proved that these singular overpartitions, which depend on two parameters k and i, can be enumerated by the function which denotes the number of overpartitions of n in which no part is divisible by k and only parts may be overlined. Andrews, Chen, Hirschhorn and Sellers, and Ahmed and Baruah discovered numerous congruences modulo 2, 3, 4, 8, and 9 for . In this paper, we prove a number of congruences modulo 16, 32, and 64 for (C) over bar3,1 (n).
引用
收藏
页码:215 / 228
页数:14
相关论文
共 21 条
  • [1] Congruences modulo 16, 32, and 64 for Andrews’s singular overpartitions
    Olivia X. M. Yao
    The Ramanujan Journal, 2017, 43 : 215 - 228
  • [2] Congruences for Andrews' singular overpartitions
    Naika, M. S. Mahadeva
    Gireesh, D. S.
    JOURNAL OF NUMBER THEORY, 2016, 165 : 109 - 130
  • [3] Congruences for -regular overpartitions and Andrews' singular overpartitions
    Barman, Rupam
    Ray, Chiranjit
    RAMANUJAN JOURNAL, 2018, 45 (02) : 497 - 515
  • [4] Congruences modulo 9 for singular overpartitions
    Shen, Erin Y. Y.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (03) : 717 - 724
  • [5] Some new congruences for Andrews' singular overpartitions
    Kathiravan, T.
    Fathima, S. N.
    JOURNAL OF NUMBER THEORY, 2017, 173 : 378 - 393
  • [6] Congruences for Andrews' (k, i)-singular overpartitions
    Aricheta, Victor Manuel
    RAMANUJAN JOURNAL, 2017, 43 (03) : 535 - 549
  • [7] Congruences for Andrews’ (k, i)-singular overpartitions
    Victor Manuel Aricheta
    The Ramanujan Journal, 2017, 43 : 535 - 549
  • [8] Congruences modulo 9 and 27 for overpartitions
    Xia, Ernest X. W.
    RAMANUJAN JOURNAL, 2017, 42 (02) : 301 - 323
  • [9] Congruences modulo 16, 32 and 64 for bipartitions with distinct even parts
    Liu, Eric H.
    Yao, Olivia X. M.
    Zhao, Tao Yan
    ARS COMBINATORIA, 2018, 140 : 301 - 310
  • [10] NEW CONGRUENCES MODULO 5 FOR OVERPARTITIONS
    Zhao, Tao Yan
    Jin, Lily J.
    COLLOQUIUM MATHEMATICUM, 2016, 145 (02) : 285 - 290