Magnetocaloric effect in MnCoGe alloys studied by first-principles calculations and Monte-Carlo simulation

被引:15
作者
Tran, Hung Ba [1 ,2 ]
Fukushima, Tetsuya [3 ]
Makino, Yukihiro [4 ]
Oguchi, Tamio [1 ,5 ]
机构
[1] Osaka Univ, Inst Sci & Ind Res, 8-1 Mihogaoka, Osaka 5670047, Japan
[2] Osaka Univ, Grad Sch Engn, Dept Precis Sci & Technol, 2-1 Yamada Oka, Suita, Osaka 5650871, Japan
[3] Univ Tokyo, Inst Solid State Phys, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2770882, Japan
[4] Daikin Ind LTD, 1-1 Nishi Hitotsuya, Osaka 5668585, Japan
[5] Osaka Univ, Ctr Spintron Res Network, Toyonaka, Osaka 5608531, Japan
关键词
MnCoGe alloys; Magnetocaloric effect; DFT; Monte-Carlo simulations; MAGNETIC-PROPERTIES; MAGNETOSTRUCTURAL TRANSITION; MARTENSITIC-TRANSFORMATION; ELECTRONIC-STRUCTURE; PHASE-TRANSITION; TEMPERATURE; CO; CU;
D O I
10.1016/j.ssc.2020.114077
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The magnetocaloric effect in orthorhombic MnCoGe1-xCux(x = 0.0-0.35) alloys are investigated by combining density functional theory (DFT) and Monte-Carlo simulation. The long-range interactions of the magnetic exchange coupling constants evaluated by the DFT calculations are considered for the Monte-Carlo simulation. The magnetic phase transition temperature is estimated by the divergence of the specific heat, and the isothermal entropy change is computed by integrating the isothermal magnetization curves with the Maxwell relation. The magnetic exchange coupling constants of the Mn-Mn pairs is decreased significantly with increasing of the concentration of Cu from 0.0 to 0.35, resulting in the rapid decrease of the Curie temperature from 618 K to 28 K. Not only the Curie temperature of the MnCoGe alloy is controllable by changing the concentration of Cu at Ge site, but also the magnetocaloric properties such as isothermal magnetic entropy change and relative cooling power are strongly dependent on the concentration of Cu.
引用
收藏
页数:5
相关论文
共 41 条
[1]   LOCAL MOMENT DISORDER IN FERROMAGNETIC-ALLOYS [J].
AKAI, H ;
DEDERICHS, PH .
PHYSICAL REVIEW B, 1993, 47 (14) :8739-8747
[2]   Developments in magnetocaloric refrigeration [J].
Brück, E .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (23) :R381-R391
[3]   First-principles and Monte Carlo study of magnetostructural transition and magnetocaloric properties of Ni2+xMn1-xGa [J].
Buchelnikov, V. D. ;
Sokolovskiy, V. V. ;
Herper, H. C. ;
Ebert, H. ;
Gruner, M. E. ;
Taskaev, S. V. ;
Khovaylo, V. V. ;
Hucht, A. ;
Dannenberg, A. ;
Ogura, M. ;
Akai, H. ;
Acet, M. ;
Entel, P. .
PHYSICAL REVIEW B, 2010, 81 (09)
[4]   Pressure-tuned magnetocaloric effect in Mn0.93Cr0.07CoGe [J].
Caron, L. ;
Trung, N. T. ;
Bruck, E. .
PHYSICAL REVIEW B, 2011, 84 (02)
[5]   The magnetic and magnetocaloric properties of CoMnGe1-xGax alloys [J].
Dincer, I. ;
Yuzuak, E. ;
Durak, G. ;
Elerman, Y. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 588 :332-336
[6]   Exploring the details of the martensitic phase transition and magnetocaloric effect of CoMnGe0.95Ga0.05 by synchrotron and magnetic measurements [J].
Dincer, I. ;
Yuzuak, E. ;
Durak, G. ;
Elerman, Y. ;
Bell, A. M. T. ;
Ehrenberg, H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 540 :236-240
[7]   First-principles study of magnetic interactions in 3d transition metal-doped phase-change materials [J].
Fukushima, T. ;
Katayama-Yoshida, H. ;
Sato, K. ;
Fujii, H. ;
Rabel, E. ;
Zeller, R. ;
Dederichs, P. H. ;
Zhang, W. ;
Mazzarello, R. .
PHYSICAL REVIEW B, 2014, 90 (14)
[8]   Microscopic mechanism of the giant magnetocaloric effect in MnCoGe alloys probed by x-ray magnetic circular dichroism [J].
Guillou, F. ;
Wilhelm, F. ;
Tegus, O. ;
Rogalev, A. .
APPLIED PHYSICS LETTERS, 2016, 108 (12)
[9]   HIGH-TEMPERATURE X-RAY STUDY OF DISPLACIVE PHASE-TRANSITION IN MNCOGE [J].
JEITSCHKO, W .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1975, 31 (APR15) :1187-1190
[10]   THE ELECTRONIC-STRUCTURE OF COMNGE WITH THE HEXAGONAL AND ORTHORHOMBIC CRYSTAL-STRUCTURE [J].
KAPRZYK, S ;
NIZIOL, S .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1990, 87 (03) :267-275