Optimum rolling ratio for obtaining {001}<110> recrystallization texture in Ti-Nb-Al biomedical shape memory alloy

被引:36
作者
Inamura, T. [1 ]
Shimizu, R. [2 ,5 ]
Kim, H. Y. [3 ]
Miyazaki, S. [3 ,4 ]
Hosoda, H. [1 ]
机构
[1] Tokyo Inst Technol, Precis & Intelligence Lab, Yokohama, Kanagawa 2268503, Japan
[2] Tokyo Inst Technol, Yokohama, Kanagawa 2268503, Japan
[3] Univ Tsukuba, Div Mat Sci, Tsukuba, Ibaraki 3058573, Japan
[4] Fdn Advancement Int Sci, Tsukuba, Ibaraki 3050821, Japan
[5] JFE Steel Corp, Tokyo, Japan
来源
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2016年 / 61卷
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
Texture; Metallic biomaterials; Shape memory alloy; Superelasticity; Stress shielding; Titanium alloy; MECHANICAL-PROPERTIES; HEAT-TREATMENT; SUPERELASTIC PROPERTIES; INDUCED MARTENSITE; SN CONTENT; MICROSTRUCTURE; DEFORMATION; TEMPERATURE; BEHAVIOR; STRAIN;
D O I
10.1016/j.msec.2015.12.086
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The rolling rate (r) dependence of textures was investigated in the Ti-26Nb-3Al (mol%) alloy to reveal the conditions required to form the {001}< 110 > recrystallization texture, which is a desirable orientation for the beta-titanium shape memory alloy. (001)< 110 > was the dominant cold-rolling texture when r = 90% and it was transferred to the recrystallization texture without forming {112}< 110 >, which is detrimental for the isotropic mechanical properties of the rolled sheet. A further increase in r resulted in the formation of {112}< 110 > in both rolling and recrystallization textures. Therefore, r should be controlled to form only the (001}< 110 > rolling texture, because the {112}< 110 > texture can overwhelm the {001}< 110 > texture during recrystallization. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:499 / 505
页数:7
相关论文
共 41 条
[1]   Room temperature aging behavior of Ti-Nb-Mo-based superelastic alloys [J].
Al-Zain, Yazan ;
Sato, Yosuke ;
Kim, Hee Young ;
Hosoda, Hideki ;
Tae Hyun Nam ;
Miyazaki, Shuichi .
ACTA MATERIALIA, 2012, 60 (05) :2437-2447
[2]  
Baker C., 1971, MET SCI, V5, P91
[3]   TITANIUM-NIOBIUM SYSTEM [J].
BROWN, ARG ;
JEPSON, KS ;
CLARK, D ;
EASTABROOK, J .
NATURE, 1964, 201 (492) :914-&
[4]   Effects of cold-rolling deformation on texture evolution and mechanical properties of Ti-29Nb-9Ta-10Zr alloy [J].
Cojocaru, V. D. ;
Raducanu, D. ;
Gloriant, T. ;
Gordin, D. M. ;
Cinca, I. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 586 :1-10
[5]   Texture Evolution in a Ti-Ta-Nb Alloy Processed by Severe Plastic Deformation [J].
Cojocaru, Vasile-Danut ;
Raducanu, Doina ;
Gloriant, Thierry ;
Cinca, Ion .
JOM, 2012, 64 (05) :572-581
[6]   Effects of cold deformation on microstructure and mechanical properties of Ti-35Nb-9Zr-6Mo-4Sn alloy for biomedical applications [J].
Dai, Shijuan ;
Wang, Yu ;
Chen, Feng ;
Yu, Xinquan ;
Zhang, Youfa .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 575 :35-40
[7]  
Dillamore I. L., 1974, Metal Science, V8, P21
[8]   FORMATION AND REVERSION OF STRESS-INDUCED MARTENSITE IN TI-10V-2FE-3AL [J].
DUERIG, TW ;
ALBRECHT, J ;
RICHTER, D ;
FISCHER, P .
ACTA METALLURGICA, 1982, 30 (12) :2161-2172
[9]   Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility [J].
Fu, Jie ;
Yamamoto, Akiko ;
Kim, Hee Young ;
Hosoda, Hideki ;
Miyazaki, Shuichi .
ACTA BIOMATERIALIA, 2015, 17 :56-67
[10]   Mechanical properties of a Ti-Nb-Al shape memory alloy [J].
Fukui, Y ;
Inamura, T ;
Hosoda, H ;
Wakashima, K ;
Miyazaki, S .
MATERIALS TRANSACTIONS, 2004, 45 (04) :1077-1082