Multiagent Monte Carlo Tree Search

被引:0
|
作者
Zerbel, Nicholas [1 ]
Yliniemi, Logan [2 ]
机构
[1] Oregon State Univ, Corvallis, OR 97331 USA
[2] Amazon Robot, Boston, MA USA
关键词
Multiagent Learning; Difference Evaluations; Monte Carlo Tree Search;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Monte Carlo Tree Search (MCTS) is a best-first search which is efficient in large search spaces and is effective at balancing exploration versus exploitation. In this work, we introduce a novel extension for MCTS, called Multiagent Monte Carlo Tree Search (MAMCTS), which pairs MCTS with difference evaluations. We demonstrate the performance of MAMCTS in a cooperative, multiagent path-planning domain called Multiagent Gridworld. We show that MAMCTS using difference evaluations outperforms MAMCTS using local rewards by up to 31.4% and MAMCTS using the global reward by up to 88.9% for a system with 1,000 agents.
引用
收藏
页码:2309 / 2311
页数:3
相关论文
共 50 条
  • [41] Scalability and Parallelization of Monte-Carlo Tree Search
    Bourki, Amine
    Chaslot, Guillaume
    Coulm, Matthieu
    Danjean, Vincent
    Doghmen, Hassen
    Hoock, Jean-Baptiste
    Herault, Thomas
    Rimmel, Arpad
    Teytaud, Fabien
    Teytaud, Olivier
    Vayssiere, Paul
    Yu, Ziqin
    COMPUTERS AND GAMES, 2011, 6515 : 48 - 58
  • [42] On Monte Carlo Tree Search for Weighted Vertex Coloring
    Grelier, Cyril
    Goudet, Olivier
    Hao, Jin-Kao
    EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, EVOCOP 2022, 2022, 13222 : 1 - 16
  • [43] Monte Carlo Tree Search for Bayesian Reinforcement Learning
    Vien, Ngo Anh
    Ertel, Wolfgang
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, 2012, : 138 - 143
  • [44] Enhancing Monte Carlo Tree Search for Playing Hearthstone
    Choe, Jean Seong Bjorn
    Kim, Jong-Kook
    2019 IEEE CONFERENCE ON GAMES (COG), 2019,
  • [45] Monte Carlo tree search for materials design and discovery
    Dieb, Thaer M.
    Ju, Shenghong
    Shiomi, Junichiro
    Tsuda, Koji
    MRS COMMUNICATIONS, 2019, 9 (02) : 532 - 536
  • [46] Monte-Carlo Tree Search for Constrained POMDPs
    Lee, Jongmin
    Kim, Geon-Hyeong
    Poupart, Pascal
    Kim, Kee-Eung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [47] Monte Carlo tree search for materials design and discovery
    Thaer M. Dieb
    Shenghong Ju
    Junichiro Shiomi
    Koji Tsuda
    MRS Communications, 2019, 9 : 532 - 536
  • [48] Monte-Carlo Tree Search: To MC or to DP?
    Feldman, Zohar
    Domshlak, Carmel
    21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 321 - 326
  • [49] Monte-Carlo Tree Search in Settlers of Catan
    Szita, Istvan
    Chaslot, Guillaume
    Spronck, Pieter
    ADVANCES IN COMPUTER GAMES, 2010, 6048 : 21 - +
  • [50] Monte Carlo Tree Search in the Presence of Transition Uncertainty
    Kohankhaki, Farnaz
    Aghakasiri, Kiarash
    Zhang, Hongming
    Wei, Ting-Han
    Gao, Chao
    Mueller, Martin
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 18, 2024, : 20151 - 20158