Multiagent Monte Carlo Tree Search

被引:0
|
作者
Zerbel, Nicholas [1 ]
Yliniemi, Logan [2 ]
机构
[1] Oregon State Univ, Corvallis, OR 97331 USA
[2] Amazon Robot, Boston, MA USA
关键词
Multiagent Learning; Difference Evaluations; Monte Carlo Tree Search;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Monte Carlo Tree Search (MCTS) is a best-first search which is efficient in large search spaces and is effective at balancing exploration versus exploitation. In this work, we introduce a novel extension for MCTS, called Multiagent Monte Carlo Tree Search (MAMCTS), which pairs MCTS with difference evaluations. We demonstrate the performance of MAMCTS in a cooperative, multiagent path-planning domain called Multiagent Gridworld. We show that MAMCTS using difference evaluations outperforms MAMCTS using local rewards by up to 31.4% and MAMCTS using the global reward by up to 88.9% for a system with 1,000 agents.
引用
收藏
页码:2309 / 2311
页数:3
相关论文
共 50 条
  • [1] Monte Carlo Tree Search with Metaheuristics
    Mandziuk, Jacek
    Walczak, Patryk
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2023, PT II, 2023, 14126 : 134 - 144
  • [2] Elastic Monte Carlo Tree Search
    Xu, Linjie
    Dockhorn, Alexander
    Perez-Liebana, Diego
    IEEE TRANSACTIONS ON GAMES, 2023, 15 (04) : 527 - 537
  • [3] Monte Carlo Tree Search in Hex
    Arneson, Broderick
    Hayward, Ryan B.
    Henderson, Philip
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2010, 2 (04) : 251 - 258
  • [4] Monte Carlo tree search in Kriegspiel
    Ciancarini, Paolo
    Favini, Gian Piero
    ARTIFICIAL INTELLIGENCE, 2010, 174 (11) : 670 - 684
  • [5] MONTE CARLO TREE SEARCH: A TUTORIAL
    Fu, Michael C.
    2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 222 - 236
  • [6] Monte Carlo Tree Search for Quoridor
    Respall, Victor Massague
    Brown, Joseph Alexander
    Aslam, Hamna
    19TH INTERNATIONAL CONFERENCE ON INTELLIGENT GAMES AND SIMULATION (GAME-ON(R) 2018), 2018, : 5 - 9
  • [7] An Analysis of Monte Carlo Tree Search
    James, Steven
    Konidaris, George
    Rosman, Benjamin
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3576 - 3582
  • [8] Approximation Methods for Monte Carlo Tree Search
    Aksenov, Kirill
    Panov, Aleksandr, I
    PROCEEDINGS OF THE FOURTH INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'19), 2020, 1156 : 68 - 74
  • [9] A TUTORIAL INTRODUCTION TO MONTE CARLO TREE SEARCH
    Fu, Michael C.
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 1178 - 1193
  • [10] Monte-Carlo Tree Search for Logistics
    Edelkamp, Stefan
    Gath, Max
    Greulich, Christoph
    Humann, Malte
    Herzog, Otthein
    Lawo, Michael
    COMMERCIAL TRANSPORT, 2016, : 427 - 440