Electrical and structural characterization of nano-carbon-aluminum composites fabricated by electro-charging-assisted process

被引:13
作者
Ge, X. [1 ]
Klingshirn, C. [1 ]
Morales, M. [1 ]
Wuttig, M. [1 ]
Rabin, O. [1 ,2 ]
Zhang, S. [3 ]
Salamanca-Riba, L. G. [1 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[3] Gen Cable Indianapolis Technol Ctr, Indianapolis, IN 46214 USA
关键词
Nano-carbon; Aluminum/carbon composite; Microscopy; Spectroscopy; Electrical conductivity enhancement; MECHANICAL-PROPERTIES; RAMAN-SPECTROSCOPY; GRAPHENE; NANOTUBES; CONDUCTIVITY; CRYSTALS; ALLOYS;
D O I
10.1016/j.carbon.2020.10.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Incorporating nano-carbon phases into metal-matrix composites is a promising strategy for simultaneously enhancing electrical conductivity and mechanical properties of metals. Here, we describe the manufacture of novel nano-carbon-aluminum composites by an electro-charging-assisted process (EAP) that show 5.6% +/- 1.7% increase in electrical conductivity compared to the base metal alloy. The source of nano-carbon that was used in this study is activated carbon with particle size less than 100 nm. The enhancement is attributed to nano-graphitic structures that extend through the lattice of the metal. Through electron transfer from the metal to the nano-structures the electron density at the interface of nano-crystalline graphite and the metal lattice increases thereby enhancing the bulk electrical conductivity. We identify the important fabrication parameters of the EAP for a reaction system employing a tapered graphite cathode. A high current density of 100 A/cm(2) causes ionization and crystallization of the carbon in the liquid metal. The increase in electrical conductivity of the composite is directly related to the incorporation of the nanocrystalline carbon in the metal lattice. The superior performance of these nano-carbon aluminum composites makes them promising candidates for power transmission lines and other applications. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:115 / 125
页数:11
相关论文
共 42 条
[1]  
Bakir Mete., 2017, Novel metal-carbon nanomaterials: A review on covetics, P884
[2]   Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering [J].
Bastwros, Mina ;
Kim, Gap-Yong ;
Zhu, Can ;
Zhang, Kun ;
Wang, Shiren ;
Tang, Xiaoduan ;
Wang, Xinwei .
COMPOSITES PART B-ENGINEERING, 2014, 60 :111-118
[3]  
Beyers J, 2014, INTEREST GROUPS ADVO, V3, P1, DOI 10.1057/iga.2014.2
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[6]   Ultrahigh Electrical Conductivity of Graphene Embedded in Metals [J].
Cao, Mu ;
Xiong, Ding-Bang ;
Yang, Li ;
Li, Shuaishuai ;
Xie, Yiqun ;
Guo, Qiang ;
Li, Zhiqiong ;
Adams, Horst ;
Gu, Jiajun ;
Fan, Tongxiang ;
Zhang, Xiaohui ;
Zhang, Di .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (17)
[7]   The Influence of Interface Structure on the Electrical Conductivity of Graphene Embedded in Aluminum Matrix [J].
Cao, Mu ;
Luo, Yongzhi ;
Xie, Yiqun ;
Tan, Zhanqiu ;
Fan, Genlian ;
Guo, Qiang ;
Su, Yishi ;
Li, Zhiqiang ;
Xiong, Ding-Bang .
ADVANCED MATERIALS INTERFACES, 2019, 6 (13)
[8]   Raman Spectroscopy of Graphene Edges [J].
Casiraghi, C. ;
Hartschuh, A. ;
Qian, H. ;
Piscanec, S. ;
Georgi, C. ;
Fasoli, A. ;
Novoselov, K. S. ;
Basko, D. M. ;
Ferrari, A. C. .
NANO LETTERS, 2009, 9 (04) :1433-1441
[9]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758
[10]   Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites [J].
Esawi, A. M. K. ;
Morsi, K. ;
Sayed, A. ;
Tahera, M. ;
Lanka, S. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (16) :2237-2241