Accounting for heterogeneity in meta-analysis using a multiplicative model-an empirical study

被引:18
作者
Mawdsley, David [1 ,2 ]
Higgins, Julian P. T. [1 ]
Sutton, Alex J. [2 ]
Abrams, Keith R. [2 ]
机构
[1] Univ Bristol, Sch Social & Community Med, Bristol, Avon, England
[2] Univ Leicester, Dept Hlth Sci, Leicester, Leics, England
关键词
meta-analysis; heterogeneity; random-effects; fixed-effect; cochrane; SYSTEMATIC-REVIEWS; COCHRANE-DATABASE; PUBLICATION; TRIALS; BIAS;
D O I
10.1002/jrsm.1216
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In meta-analysis, the random-effects model is often used to account for heterogeneity. The model assumes that heterogeneity has an additive effect on the variance of effect sizes. An alternative model, which assumes multiplicative heterogeneity, has been little used in the medical statistics community, but is widely used by particle physicists. In this paper, we compare the two models using a random sample of 448 meta-analyses drawn from the Cochrane Database of Systematic Reviews. In general, differences in goodness of fit are modest. The multiplicative model tends to give results that are closer to the null, with a narrower confidence interval. Both approaches make different assumptions about the outcome of the meta-analysis. In our opinion, the selection of the more appropriate model will often be guided by whether the multiplicative model's assumption of a single effect size is plausible. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 42 条
[1]  
[Anonymous], PHYS REV D
[2]  
[Anonymous], COCHRANE DATABASE SY
[3]  
[Anonymous], 2014, STARGAZER LATEX HTML
[4]  
[Anonymous], HDB RES SYNTHESIS ME
[5]  
[Anonymous], 2002, Meta-Analysis of Controlled Clinical Trials
[6]   Meta-analysis inside and outside particle physics: two traditions that should converge? [J].
Baker, Rose D. ;
Jackson, Dan .
RESEARCH SYNTHESIS METHODS, 2013, 4 (02) :109-124
[7]  
Borenstein M, 2009, INTRO METAANALYSIS
[8]   A comparison of statistical methods for meta-analysis [J].
Brockwell, SE ;
Gordon, IR .
STATISTICS IN MEDICINE, 2001, 20 (06) :825-840
[9]  
Calcagno V, 2010, J STAT SOFTW, V34, P1
[10]   LOWESS - A PROGRAM FOR SMOOTHING SCATTERPLOTS BY ROBUST LOCALLY WEIGHTED REGRESSION [J].
CLEVELAND, WS .
AMERICAN STATISTICIAN, 1981, 35 (01) :54-54