QoE-Based Task Offloading With Deep Reinforcement Learning in Edge-Enabled Internet of Vehicles

被引:86
作者
He, Xiaoming [1 ]
Lu, Haodong [2 ]
Du, Miao [2 ]
Mao, Yingchi [1 ]
Wang, Kun [3 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Nanjing 210098, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Internet Things, Nanjing 210003, Peoples R China
[3] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
基金
中国国家自然科学基金;
关键词
Task analysis; Quality of experience; Servers; Training; Computational modeling; Energy consumption; Convergence; Internet of vehicles (IoV); edge; task offloading; deep deterministic policy gradients (DDPG); QoE; RESOURCE-ALLOCATION;
D O I
10.1109/TITS.2020.3016002
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In the transportation industry, task offloading services of edge-enabled Internet of Vehicles (IoV) are expected to provide vehicles with the better Quality of Experience (QoE). However, the various status of diverse edge servers and vehicles, as well as varying vehicular offloading modes, make a challenge of task offloading service. Therefore, to enhance the satisfaction of QoE, we first introduce a novel QoE model. Specifically, the emerging QoE model restricted by the energy consumption: 1) intelligent vehicles equipped with caching spaces and computing units may work as carriers; 2) various computational and caching capacities of edge servers can empower the offloading; and 3) unpredictable routings of the vehicles and edge servers can lead to diverse information transmission. We then propose an improved deep reinforcement learning (DRL) algorithm named PS-DDPG with the prioritized experience replay (PER) and the stochastic weight averaging (SWA) mechanisms based on deep deterministic policy gradients (DDPG) to seek an optimal offloading mode, saving energy consumption. Specifically, the PER scheme is proposed to enhance the availability of the experience replay buffer, thus accelerating the training. Moreover, reducing the noise in the training process and thus stabilizing the rewards, the SWA scheme is introduced to average weights. Extensive experiments certify the better performance, i.e., stability and convergence, of our PS-DDPG algorithm compared to existing work. Moreover, the experiments indicate that the QoE value can be improved by the proposed algorithm.
引用
收藏
页码:2252 / 2261
页数:10
相关论文
共 50 条
  • [31] Com-DDPG: Task Offloading Based on Multiagent Reinforcement Learning for Information-Communication-Enhanced Mobile Edge Computing in the Internet of Vehicles
    Gao, Honghao
    Wang, Xuejie
    Wei, Wei
    Al-Dulaimi, Anwer
    Xu, Yueshen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (01) : 348 - 361
  • [32] Research on a Task Offloading Strategy for the Internet of Vehicles Based on Reinforcement Learning
    Xiao, Shuo
    Wang, Shengzhi
    Zhuang, Jiayu
    Wang, Tianyu
    Liu, Jiajia
    SENSORS, 2021, 21 (18)
  • [33] Delay Constrained Hybrid Task Offloading of Internet of Vehicle: A Deep Reinforcement Learning Method
    Wu, Chenhao
    Huang, Zhongwei
    Zou, Yuntao
    IEEE ACCESS, 2022, 10 : 102778 - 102788
  • [34] Deep Reinforcement Learning for Collaborative Computation Offloading on Internet of Vehicles
    Li, Yureng
    Xu, Shouzhi
    Li, Dawei
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [35] Dynamic task offloading for Internet of Things in mobile edge computing via deep reinforcement learning
    Chen, Ying
    Gu, Wei
    Li, Kaixin
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2022,
  • [36] Efficient End-Edge-Cloud Task Offloading in 6G Networks Based on Multiagent Deep Reinforcement Learning
    She, Hao
    Yan, Lixing
    Guo, Yongan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 20260 - 20270
  • [37] Federated Learning for Cost Optimized Offloading in Edge-enabled Industrial Internet of Things
    Hazra, Abhishek
    Mali, Bhabesh
    Kalita, Alakesh
    Gurusamy, Mohan
    2023 IEEE FUTURE NETWORKS WORLD FORUM, FNWF, 2024,
  • [38] Energy-Efficient Task Offloading and Resource Allocation via Deep Reinforcement Learning for Augmented Reality in Mobile Edge Networks
    Chen, Xing
    Liu, Guizhong
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (13) : 10843 - 10856
  • [39] Dependency-Aware Dynamic Task Offloading Based on Deep Reinforcement Learning in Mobile-Edge Computing
    Fang, Juan
    Qu, Dezheng
    Chen, Huijie
    Liu, Yaqi
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 1403 - 1415
  • [40] DMRO: A Deep Meta Reinforcement Learning-Based Task Offloading Framework for Edge-Cloud Computing
    Qu, Guanjin
    Wu, Huaming
    Li, Ruidong
    Jiao, Pengfei
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (03): : 3448 - 3459